- 无标题文档
查看论文信息

中文题名:

 基于整数规划的不正常航班恢复问题    

姓名:

 范筱然    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 070101    

学科专业:

 数学与应用数学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2020    

学校:

 北京师范大学    

校区:

 北京校区培养    

学院:

 数学科学学院    

第一导师姓名:

 张博宇    

第一导师单位:

 北京师范大学数学科学学院    

提交日期:

 2020-06-07    

答辩日期:

 2020-05-15    

外文题名:

 Decision support system for irregular flight recovery based on integer programming model    

中文关键词:

 不正常航班恢复 ; 整数规划模型 ; 延误损失 ; lingo 求解    

外文关键词:

 irregular flight recovery ; integer programming model ; delay loss ; Lingo solution    

中文摘要:

为解决由于飞机自身问题、机场问题或者天气问题导致的航班延误的恢复问题,以最小化航空公司的延误成本以及最小化航空公司的调整成本为目标,建立了不正常航班恢复的整数规划模型。以得到最终的航班,执行航班的时间和执行航班的飞机为目的,将三维问题拆分成两个二维问题来求解。分别以最小化航班延误成本,最小化航空公司调整成本为目的,以考虑了航班要客,航线重要程度,飞机机型宽窄的成本为目标函数,以机场容纳能力,最长延误时间,飞机降落起飞间隔等为约束条件,建立了两个二维 0-1 整数规划模型。用 lingo 软件对模型进行求解,最终将两个模型的结果结合,得到最优的航班恢复方案。列出模型及求解方法后,分别针对三种不同的航空扰动情况,给出了本文提出的模型在实际问题中应用的例子。


外文摘要:
In order to solve the problem of recovery of flight delay caused by the problem of aircraft itself, airport or weather, an integer programming model of abnormal flight recovery is established to minimize the delay cost of airlines and the adjustment cost of airlines. In order to get the final flight, the time of flight execution and the aircraft of flight execution, the three-dimensional problem is divided into two-dimensional problems to solve. Two two-dimensional 0-1 integer programming models are established for the purpose of minimizing flight delay cost andairline adjustment cost, takingthecost offlightVIP,route importance and aircraft type width as objective functions, and taking airport capacity, maximum delay time and aircraft landing and departure interval as constraints. Lingo software is used to solve the model, and finally the results of the two models are combined to get the optimal flight recovery scheme. After listing the models and solving methods,the application examples of the models proposed in this paper are given for three different cases of aviation disturbance. 
参考文献总数:

 14    

插图总数:

 0    

插表总数:

 0    

馆藏号:

 本070101/20154    

开放日期:

 2021-06-07    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式