中文题名: | 基于集成学习的精细化人口时空分布研究——以中国北京市为例 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081602 |
学科专业: | |
学生类型: | 硕士 |
学位: | 工学硕士 |
学位类型: | |
学位年度: | 2023 |
校区: | |
学院: | |
研究方向: | 人口空间化 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2023-06-12 |
答辩日期: | 2023-05-28 |
外文题名: | Fine-Grained Population Spatiotemporal Distribution Based on Ensemble Learning: A Case Study of Beijing, China |
中文关键词: | |
外文关键词: | Ensemble Learning ; Baidu Heat Map ; Population Spatialization ; Spatial Downscaling ; Dynamic Population Distribution |
中文摘要: |
准确并且具有高时空分辨率的人口分布数据对于公共卫生、城市规划和灾害管理等许多应用领域具有重要的价值。然而,由于对复杂人类活动模式的了解有限,大面积绘制此类数据仍然是一项具有挑战性的任务。此外,随机森林模型是人口空间化研究中使用最广泛的模型。然而,由于随机森林模型对特征变量的理解有限以及人口空间化问题的复杂性,仍然缺乏准确绘制人口空间分布的可靠模型。本研究针对上述问题,通过集成学习算法Stacking构建了一种集成式人口空间化模型,并基于分区密度建模法结合百度热力图数据,提出了一种人口分布空间降尺度框架,并生成了北京市常规工作日的高时空分辨率(每小时,100m)人口密度分布图。此外,本文分析了人口空间分布的归因以及城市人口密度分布的时空特征。本文的主要研究内容及结论如下: |
外文摘要: |
Accurate population distribution data with high spatiotemporal resolution is valuable for many applications such as public health, urban planning and disaster management. However, mapping such data over large areas remains a challenging task due to the limited understanding of complex human activity patterns. In addition, the random forest model is the most widely used model in population spatialization studies. However, due to the limited understanding of the feature variables in random forest model and the complexity of the population spatialization problem, reliable models for accurately mapping the spatial distribution of the population are still lacking. In this study, an integrated population spatialization model is constructed by ensemble learning algorithm Stacking, and based on the dasymetric modeling method combined with Baidu heat map data, a spatial downscaling framework for population distribution is proposed and a high spatiotemporal resolution (i.e., hourly, 100 m) population density distribution map for regular weekdays in Beijing is generated. In addition, this paper analyzes the attribution of population spatial distribution and the spatiotemporal characteristics of urban population density distribution. The main research contents and conclusions of this study are as follows: |
参考文献总数: | 140 |
馆藏号: | 硕081602/23015 |
开放日期: | 2024-06-12 |