中文题名: | 基于本征微观态的振子同步和网络传播动力学与临界性研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 071101 |
学科专业: | |
学生类型: | 博士 |
学位: | 理学博士 |
学位类型: | |
学位年度: | 2023 |
校区: | |
学院: | |
研究方向: | 复杂网络 复杂系统 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2022-02-16 |
答辩日期: | 2022-12-17 |
外文题名: | Dynamics and criticality of oscillator synchronization and network transmission based on eigen microstate |
中文关键词: | |
外文关键词: | Complex systems ; Complex network ; Eigen microstates ; Coupled oscillator ; Epidemics ; COVID19 |
中文摘要: |
现实世界中,系统是一切事物的基本存在方式。系统,尤其是复杂系统,一般由相互作用的子系统构成,往往是多尺度的且具有层次性。复杂系统的功能涌现和状态演化并非是子系统属性的简单叠加,其内在机制的揭示依赖于系统相变与临界性研究。一般地,复杂自组织系统往往与外界存在能量和物质交换,通常这些系统处于非平衡状态。虽然平衡系统临界性的各种研究方法已经相对成熟,也取得一些重要的研究结果,但是这些方法并不能完全照搬到非平衡系统。重要的是,真实系统的序参量、哈密顿量和能量分布等统计物理量并不已知,如何通过观测数据研究这些系统的集体行为和相变与临界现象是亟待解决的科学问题。从吉普斯统计系综出发,基于观测数据或模拟数据,构建微观态构型和统计系综矩阵,利用本征微观态凝聚和系综矩阵奇异值研究系统临界性,可以研究各类复杂系统非平衡相变。 |
外文摘要: |
In the real world, systems are the fundamental forms of everything. Systems, especially complex systems, are generally composed of interacting subsystems and are often multi-scale and hierarchical. The function emergence and state evolution of complex systems are not simply the superposition of the properties of subsystems. The discovery of their internal mechanisms depends on the study of phase transition and criticality. In general, complex self-organizing systems, exchanging energy and material with the outside, are usually in a non-equilibrium state. Although there exist various and mature research methods about the criticality and some important results obtained in equilibrium systems, these methods can not be directly applied to to non-equilibrium systems. It is important that in some real systems, the order parameters, hamiltonian and energy distribution are not known. How to study the collective behavior, phase transition and critical phenomena of these systems just through observational data is an urgent scientific problem. Based on the Gipps statistical ensemble, the microstate configuration and statistical ensemble matrix are constructed based on the observed or simulated data, and the criticality of the system is studied through the condensation of the eigen microstates and the singular values of the ensemble matrix, which will open a new channel for the study of non-equilibrium phase transitions in real complex systems. |
参考文献总数: | 249 |
作者简介: | 硕博期间积极参与导师和合作导师的科研项目,其中国家自然科学基金重点项目两项,面上项目一项,青年基金两项。博士期间作为主要参与人参加校级项目一项,主持校级疫情防控学生专项研究一项。硕博期间已发表学术论文6篇,其中一作SCI期刊三篇,一区top一篇;三作SCI期刊两篇,北大核心一篇。已完成在审或待投论文4篇。主要从事复杂网络结构分析、网络传染病动力学、耦合振子同步、奇异态研究以及复杂系统相变与临界性、本征微观态方法推广的研究工作。在复杂网络社团结构识别,不同驻留时间的双层时变网络传染病分析,SIR传播模型阈值估计,伴随个体迁移的网络化集合种群模型,新冠疫情传播以及相位耦合振子系统临界性和奇异态研究等方面取得了一些研究成果。目前关注的研究领域为复杂性研究,特别是复杂子系统之间局域的相互作用与系统宏观复杂现象的关系。 |
馆藏地: | 图书馆学位论文阅览区(主馆南区三层BC区) |
馆藏号: | 博071101/23009 |
开放日期: | 2023-12-17 |