- 无标题文档
查看论文信息

中文题名:

 辛群 S p (n) 的上同调环自同态    

姓名:

 陈誉文    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070101    

学科专业:

 数学与应用数学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2024    

校区:

 北京校区培养    

学院:

 数学科学学院    

研究方向:

 代数拓扑    

第一导师姓名:

 赵旭安    

第一导师单位:

 数学科学学院    

提交日期:

 2024-05-24    

答辩日期:

 2024-05-15    

外文题名:

 Endomorphisms of cohomology ring of Symplectic groups S p(n)    

中文关键词:

 辛群 ; 上同调环自同态 ; K-理论    

外文关键词:

 Symplectic group ; Endomorphisms of cohomology ring ; K-theory    

中文摘要:

计算拓扑空间之间映射的同伦集是代数拓扑中的一个重要问题, 一般来说这是非常困难的. 设$X,Y$是两个拓扑空间, 奇异上同调函子$H^\ast$诱导出映射$H^\ast:\left[X,Y\right]\rightarrow Hom(H^*(Y),H^*(X))$.我们希望确定$Im\left(H^\ast\right)$,这是计算同伦集$\left[X,Y\right]$过程中的重要一步. 

对于紧单连通李群,王冉利用K-理论和陈特征给出了$Im(H^*)$的一个上界$H(Y,X)$. 对于紧单连通李群$G$, 记$DH(G)$为$H(G,G)$中所有对角同态的集合. 赵旭安给出了$DH(SU(n+1))$的一组基底. 本文采用类似的方法, 给出了$DH(Sp(n))$的一组基底. 利用这组基底, 本文证明了李群$Sp(2n)$上没有反定向自同胚. 本文的最后讨论了映射的实现问题.

外文摘要:

Calculating the homotopy classes of maps between topological spaces is an important problem in algebraic topology, which is generally very difficult. We hope to get some constraints by studying homomorphisms between algebraic invariants. Let $X, Y$ be two topological spaces, the singular homology functor $H^\ast$ induces the function $H^\ast:\left[X,Y\right]\rightarrow Hom(H^*(Y),H^*(X))$. We want to determine $Im\left(H^\ast\right)$, which is an important step in calculating the homotopy set $\left[X,Y\right]$.

For a compact simply connected Lie group, using the knowledge of K-theory and Chern characteristic, Ran Wang has given an upper bound $H(Y,X)$ of $Im(H^*)$. For some common compact simply connected Lie groups $G$, we want to first compute the subset of  $H(G,G)$ which corresponding to diagonal maps, denoted as $DH(G)$, and try to find some rules. Xu-an Zhao has given a set of generators for $DH(SU(n+1))$. In this paper, I give a set of generators for $DH(Sp(n))$ using a similar method. As a corollary, I prove that there is no anti-oriented endomorphism on the Lie group $Sp(2n)$. At the end of this paper, I discussed the realization of the ring homomorphism in $DH(Sp(n))$.

参考文献总数:

 12    

作者简介:

 陈誉文,北京师范大学数学科学学院2020级本科生。    

插图总数:

 0    

插表总数:

 0    

馆藏号:

 本070101/24031    

开放日期:

 2025-05-25    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式