中文题名: | 化学加工中空间因素作用的认知与脑机制 |
姓名: | |
学科代码: | 040202 |
学科专业: | |
学生类型: | 博士 |
学位: | 理学博士 |
学位年度: | 2015 |
校区: | |
学院: | |
研究方向: | 数学认知与学习 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2015-06-08 |
答辩日期: | 2015-06-03 |
外文题名: | THE COGNITIVE AND BRAIN MECHANISM OF SPATIAL FACTOR IN CHEMICAL PROCESSING |
中文摘要: |
化学与空间能力之间的关系研究是化学教育心理学研究者们长久以来一直重点关注的问题。国内外研究表明化学学业成就与空间能力具有高相关,良好的空间能力能够有效地预测学生在化学学科领域中的成就。但是以往的研究大多只关注化学与空间能力之间的相关关系,并没有通过实验的方法对其关系的本质原因进行探讨,并没有考查空间能力对化学学习起作用的内在机制。而研究空间能力作用于化学的内在机制问题,对于我们理解化学学习与空间能力的关系,认识化学加工的心理过程,制定有效的化学学习与教学方法有着重要的理论意义和教育意义。本论文通过研究化学加工中空间因素作用的机制来探讨这一问题。这里的化学加工专指个体对化学任务的信息加工。本论文主要通过认知行为测验、眼动实验和功能磁共振成像实验的方法分别考查化学加工中空间因素作用的认知与脑机制,探讨空间因素作用于化学加工的原因。 研究一采用认知行为测验的方法,在以往实验基础上,控制其他认知因素对空间能力与化学关系的影响,考查空间能力与大学化学成绩之间的关系,探讨空间能力是否是影响化学加工的关键因素。研究发现:(1)化学成绩与空间能力、计算能力、词语理解、一般认知能力和图形推理能力之间存在显著的正相关;(2)控制一般认知任务(选择反应时、工作记忆和快速视知觉)得分后,化学成绩与空间能力之间仍然存在显著的正相关关系,而与其他认知能力之间的相关不再显著;(3)控制除空间能力之外的其他认知因素后,化学成绩与空间能力之间的正相关关系仍然显著。结果说明空间能力是影响化学成就的关键认知因素。 研究二和研究三分别采用认知行为实验和眼动实验的方法考查化学加工中空间因素作用的认知机制。研究发现:(1)化学元素加工中存在空间—元素联结的反应编码(Spatial-ElementAssociation of Response Codes effect,SEARC)效应:对于元素周期表中小序号的化学元素,被试左手的反应时更快,而对于大序号的元素,被试右手的反应时更快;而且这种效应受呈现的符号形式影响,即只有元素符号效应显著,汉字名称效应不显著;(2)化学元素表征具有空间属性:当被试要报告在周期表中小序号元素时,眼睛会呈现相对向左的运动,而当被试要报告大序号元素时,眼睛会呈现相对向右的运动;(3)化学物质的化学式表征具有空间属性:被试在判断化学式左边的元素时,眼睛会呈现相对向左的运动,而判断化学式右边的元素时,眼睛会呈现相对向右的运动。结果从心理表征层面证明了化学加工中存在空间表征,空间因素对化学加工的作用可能是由于化学加工对空间表征的依赖。 研究四采用功能磁共振成像的方法考查化学加工中空间因素作用的脑机制。研究发现:(1)化学元素加工和化学反应加工比一般语言加工在大脑顶叶区域表现出更多的激活,顶叶是参与空间加工的重要脑区;而语言加工在中央后回和左侧颞中等语言加工相关脑区表现出更多的激活。(2)对空间加工和语言加工任务定义的感兴趣区分析发现,在空间加工的感兴趣区内,化学加工比语言加工的激活更强;而在语言加工的感兴趣区,语言加工比化学加工激活更强。结果从神经层面说明化学加工与空间加工存在共同的神经基础,空间因素对化学加工的作用可能是由于化学加工对空间加工脑区的依赖。 综上所述,空间因素是影响化学加工的关键认知因素,空间因素对化学加工的作用在认知上表现为化学心理表征具有空间属性,在神经基础上表现为化学加工对空间加工脑区的依赖。
﹀
|
外文摘要: |
The relationship between spatial abilities and chemistry performance has been concerned by researchers in educational psychology for chemistry for a long time. Researchers have found a significant relationship between spatial ability and chemistry achievement and confirmed that spatial factor played a role in chemistry study. However, previous studies did not investigate the questions why and how spatial ability works on chemistry using empirical methods, which was fundamental for us to understand the relationship between spatial ability and chemistry study. In the current research, we used behavioral tests and eye movement techniques to investigate the cognitive mechanism, and used functional magnetic resonance imaging (fMRI) to investigate the brain mechanism of spatial factor in chemical processing. We attempted to answer the question why spatial factor worked on chemistry study. In the first study, we conducted a correlation study on spatial ability and achievement in college chemistry after controlling for other cognitive factors, which was neglected by other studies. We found that, (1) college chemistry performance significantly positively correlated with spatial ability, arithmetic, word semantic, general cognitive abilities and reasoning; (2) after controlling for general cognitive factors (like reaction time, working memory and rapid visual perception), significant correlation still existed between college chemistry performance and spatial ability, but disappeared between college chemistry performance and other cognitive factors, like reasoning; (3) after controlling for all the other cognitive factors, college chemistry performance was still significantly correlated with spatial ability. The results suggested that spatial ability was a key factor in chemistry performance. In the second and third studies, we used cognitive behavioral and eye movement techniques to investigate the cognitive mechanism of spatial factor in chemical processing. We found that, (1) there was SEARC effect (Spatial-Element Association of Response Codes effect) in chemical element processing: for smaller number elements, left hand responded faster than right hand; for larger number elements, right hand responded faster than left hand. And this SEARC effect was sensitive to modality of the stimuli presented; (2) chemical element representation had spatial attribute: by measuring the eye position during randomly generating element, we were able to predict the position in periodic table of next element. A leftward change in eye position announced that the next element would be smaller than the last; while a rightward change forecast that the next element number would be larger; (3) chemical formula representation had spatial attribute: in the element judgment task, elements in the left of chemical formulas would produce a leftward eye movement; while elements in the right of chemical formulas would produce a rightward eye movement. The results demonstrated the existence of spatial representation during chemical processing, which may be an explanation of how spatial factor works on chemical processing. In the last study, we used fMRI to investigate the brain mechanism of spatial factor in chemical processing. We found that, (1) compared to general language processing, chemical element processing and chemical reaction processing had more activation in parietal lobe, which was the key area for spatial processing; compared to two chemical processing, language processing had more activation in posterior central gyrus and left middle temporal gyrus, which were the key areas for language processing; (2) ROI analysis found that, chemical processing had more activation than language processing in spatial processing regions, while language processing had more activation than chemical processing in language processing brain regions. These results suggested that the deep connection between chemical and spatial processing might be mediated by the common neural basises in the parietal lobe. In conclusion, we found that spatial factor was a key factor in chemical processing. The existence of spatial representation and reliance on parietal lobes in chemical processing might be the mechanism of spatial factor wording on chemical processing.
﹀
|
参考文献总数: | 172 |
馆藏地: | 图书馆学位论文阅览区(主馆南区三层BC区) |
馆藏号: | 博040202/1506 |
开放日期: | 2015-06-08 |