中文题名: | R^n 中有界区域上带有 L^p 范数的奇异Moser-Trudinger 不等式及其极值函数的存在性 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070101 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2020 |
校区: | |
学院: | |
研究方向: | 调和分析及其应用 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
提交日期: | 2020-06-17 |
答辩日期: | 2020-05-30 |
外文题名: | Singular Moser-Trudinger inequality with L^p norm for bounded domains in R^n and the existence of extremals |
中文关键词: | |
外文关键词: | Singular Moser-Trudinger inequality ; blow-up analysis ; extremals |
中文摘要: |
由于Moser-Trudinger 不等式在调和分析和偏微分方程等学科中有广泛应用, 过去几十年, 人们做了大量的研究. 本文主要研究了Rn中有界区域上带有Lp范数的奇异Moser-Trudinger 不等式及其极值函数的存在性. 本文分为三个部分.第一部分, 我们通过构造测试函数, 举出反例, 得出了奇异Moser-Trudinger 不等式在α ≥ λ(?)时不成立.第二部分, 我们证明了在0 ≤ α < λ(?)时奇异的Moser-Trudinger 不等式成立.首先, 我们利用Adimurthih-Sandeep 带奇异项的集中紧原理证明了次临界的奇异Moser-Trudinger 不等式极值函数的存在性.其次, 我们建立了次临界情况下极值函数所满足的Euler-Lagrange 方程, 并对Euler-Lagrange 方程的解进行估计. 最后, 通过爆破分析对爆破点在区域内和区域边界两种情况分别讨论, 证明了临界情况下奇异的Moser-Trudinger 不等式成立. 第三部分, 我们借助Carleson-Chang 的方法给出集中紧序列对应的奇异Moser-Trudinger 不等式的上界估计, 并通过构造测试函数得到更大的下界估计, 推导出爆破序列不存在, 从而证明了临界情况下奇异Moser-Trudinger 不等式的极值函数存在. |
外文摘要: |
The Moser-Trudinger inequality fascinates a lot of mathematicians and physicist due to their physical significance and application to harmonic analysis and different type of PDE’s, so for the past few decades, a lot of research has been done. In this dissertation, we mainly consider an singular Moser-Trudinger inequality with L p norm for bounded domains in R n and the existence of it’s extremal. This thesis is divided into three parts. Firstly, we construct test functions to obtain contradictions and show that the singular Moser-Trudinger inequality is infinity for α ≥ λ(Ω). Secondly, we prove that the singular Moser-Trudinger inequality is finite for 0 ≤ α < λ(Ω). In the first place, we use Adimurthi and Sandeep’s concentration compactness principle to show the existence of maximizers in subcritical case. Next, we construct the relevant Euler-Lagrange equation for the maximizers of the subcritical singular Moser-Trudinger function and investigate the asymptotic behavior of the maximizers. Then, we investigate the two case respectively through blow-up analysis. Thirdly, we use Carleson-Chang’s upper bound estimates to derive the upper bound estimates of singular Moser-Trudinger inequality with the blow-up sequence, and we get the lower bound through constructing test function, thereby the blow-up doesn’t exist, thus we prove the existence of the extremal functions of the improved singular Moser-Trudinger inequality. |
参考文献总数: | 27 |
开放日期: | 2021-06-17 |