- 无标题文档
查看论文信息

中文题名:

 基于公共品博弈的奖惩机制研究    

姓名:

 黄晓妍    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 070101    

学科专业:

 数学与应用数学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2021    

学校:

 北京师范大学    

校区:

 北京校区培养    

学院:

 数学科学学院    

第一导师姓名:

 张博宇    

第一导师单位:

 北京师范大学数学科学学院    

提交日期:

 2021-05-20    

答辩日期:

 2021-05-15    

外文题名:

 RESEARCH ON THE REWARDS AND PUNISHMENT MECHANISM BASED ON THE PUBLIC GOODS GAME    

中文关键词:

 公共品博弈 ; 合作 ; 奖惩机制 ; 纳什均衡    

外文关键词:

 Public goods game ; Cooperation ; Reward and punishment mechanism ; Nash equilibrium    

中文摘要:

本文基于引入了奖惩机制的公共品博弈,从数据拟合和理论分析两方面研究参与者在奖惩机制下的行为。先是通过对实验数据的处理,拟合参与者的贡献行为模型及投票行为模型,进一步得出参与者的收益函数,进行纳什均衡分析,最后代入拟合出的参数数值进行计算。

结果表明,在实验中,对个体每回合的贡献影响最大的因素是个体在上一回合的贡献,其次是他人在上一回合的平均贡献,且合作之所以能够维持,得益于条件合作者的大量存在。此外,个体在实施奖励和惩罚时,更多地是根据对方的相对贡献而非绝对贡献,且普遍愿意在奖励时按贡献比例奖励每一个人,而在惩罚时去惩罚贡献最少的人。最后计算得出,当全组均为只使用奖励的人时,纳什均衡为不贡献,当全组均为只使用惩罚或均为奖惩结合的人时,纳什均衡为全贡献,奖惩结合的人对合作的维持起主要作用。


外文摘要:
Based on the public goods game with reward and punishment mechanism, this paper studies the behavior of participants under reward and punishment mechanism from data fitting and theoretical analysis. Firstly, the contribution behavior model and voting behavior model of participants are established through the processing of experimental data. On this basis, the income function of the participants is obtained, and the Nash equilibrium analysis is carried out, the specific value of which can be calculated by substituting the fitting parameters.
It is found that the most important factor affecting the individual contribution in each round is his own contribution in the previous round, followed by the average contribution of others in the previous round. It is also found that when individuals implement reward and punishment, they are more based on the relative contribution of each other than the absolute contribution, and are generally willing to reward each person according to the proportion of contributions and punish those who contribute the least. Finally, it is calculated that when the whole group is reward-only, the Nash equilibrium is not contributing, and when the whole group is reward-only or reward-punishment combination, the Nash equilibrium is contributing all scores.
参考文献总数:

 13    

插图总数:

 0    

插表总数:

 0    

馆藏号:

 本070101/21096    

开放日期:

 2022-05-20    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式