- 无标题文档
查看论文信息

中文题名:

 神经网络应用于噪声下量子纠缠态分类的研究    

姓名:

 宋妍妍    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070207    

学科专业:

 光学    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2024    

校区:

 北京校区培养    

学院:

 物理学系    

研究方向:

 量子光学与量子信息    

第一导师姓名:

 蒋楠    

第一导师单位:

 物理学系    

提交日期:

 2024-05-28    

答辩日期:

 2024-05-24    

外文题名:

 RESEARCH ON NEURAL NETWORK APPLICATION IN THE CLASSIFICATION OF QUANTUM ENTANGLEMENT UNDER NOISE    

中文关键词:

 量子纠缠 ; 纠缠分类 ; 神经网络 ; 量子噪声    

外文关键词:

 quantum entanglement ; entanglement classification ; neural network ; quantum noise    

中文摘要:

量子纠缠,作为量子力学中的核心现象,不仅在理论物理学中占据着基础地位,而且在量子信息科技,尤其是量子计算和量子通信等领域,发挥着至关重要的作用。尽管其重要性不言而喻,量子纠缠的检测和量化却因为其固有的复杂性以及对于高度精确测量的要求而变得尤为困难。随着量子技术向高维度和多体系统的扩展,这一挑战更是日益加剧。传统的量子态重构方法,如量子态层析,虽然在精确度方面表现出色,但随着系统规模的扩大,所需的资源和计算量急剧增加,实际操作变得极为不便。此外,实验中不可避免的噪声问题,进一步加重了量子纠缠检测的难度。噪声不仅可能掩盖或模糊量子系统的真实状态,还可能导致对纠缠的误判,从而影响量子计算机的计算准确性或量子通信的安全性。

机器学习,作为数据处理任务的一个广泛且强大的工具集,已经成为近年来众多科学领域研究的前沿。特别是神经网络,凭借其卓越的适应性和广泛的应用潜力,在多种机器学习算法中脱颖而出,占据了核心地位。探索神经网络与量子信息科学的融合,旨在借助神经网络强大的学习和优化能力,应对量子信息科学领域内的诸多挑战和复杂问题。神经网络的这种能力,尤其是在模式识别、数据分类和预测等任务中的表现,为量子信息处理提供了新的视角和解决方案。量子信息科学作为一个高度专业和技术性的领域,涉及到的问题往往超出了传统算法的处理范畴,而神经网络通过其自适应学习机制,能够从大量数据中自动提取规律和特征,进而用于量子态的分类、量子纠缠的检测、以及量子系统的控制策略优化等关键任务。

1.本文利用卷积神经网络研究了神经网络在量子纠缠分类任务上的表现。量子态的数据结构在某种程度上类似于图像数据,具有局部关联性。卷积层和池化层能够有效地捕捉这种局部关联性,从而在量子态的特征提取上表现出色。卷积神经网络相比于全连接神经网络具有更高的计算效率,它通过共享权重和局部连接减少了参数数量和计算量,使得我们在处理大规模量子数据时能够更加高效。我们训练了一个基于卷积神经网络的模型,用于判断两比特量子态是否纠缠。随后构造了测试集和验证集测试模型的表现。结果表明在足够的样本数量下,通过选择卷积神经网络并且采用恰当的特征提取方式,实现对量子纠缠状态的高效分类是完全可行的。

2.本文详细研究了模型在不同噪声条件下的表现,并发现即使在较高的噪声水平下,模型依然能够保持较高的准确率,证明了该模型能够在一定程度上抵抗噪声的干扰,具有稳健型。我们探讨了模型的泛化能力,发现即使在训练集和测试集有显著差异的情况下,模型仍能保持良好的性能,表明了该方法具有广泛适用性。

外文摘要:

Quantum entanglement, as a core phenomenon in quantum mechanics, not only occupies a foundational position in theoretical physics but also plays a crucial role in the field of quantum information science, especially in areas such as quantum computing and quantum communication. Despite its undeniable importance, the detection and quantification of quantum entanglement become particularly challenging due to its inherent complexity and the requirement for highly precise measurements. As quantum technology extends into higher dimensions and multi-body systems, this challenge only intensifies. Traditional quantum state reconstruction methods, like quantum state tomography, although excellent in terms of accuracy, require dramatically increased resources and computational effort as the system size grows, making practical operation exceedingly inconvenient. Moreover, the inevitable noise issues in experiments further complicate the detection of quantum entanglement. Noise can not only mask or blur the true state of a quantum system but may also lead to misjudgments of entanglement, thereby affecting the computational accuracy of quantum computers or the security of quantum communication.

Machine learning, as a broad and powerful toolset for data processing tasks, has emerged at the forefront of research in numerous scientific fields in recent years. In particular, neural networks, with their exceptional adaptability and broad application potential, have stood out among various machine learning algorithms and occupy a central position. Exploring the integration of neural networks with quantum information science aims to leverage the powerful learning and optimization capabilities of neural networks to address many challenges and complex issues within the field of quantum information science. The capabilities of neural networks, especially in tasks such as pattern recognition, data classification, and prediction, offer new perspectives and solutions for quantum information processing. Quantum information science, as a highly specialized and technical field, often involves problems that exceed the capabilities of traditional algorithms. In contrast, neural networks, through their adaptive learning mechanisms, can automatically extract features from large amounts of data, which can then be used for critical tasks such as quantum state classification, detection of quantum entanglement, and optimization of control strategies for quantum systems.

1. In this paper, we investigate the performance of convolutional neural networks (CNNs) in the task of classifying quantum entanglement. The data structure of quantum states is somewhat analogous to image data, exhibiting local correlations. Convolutional layers and pooling layers can effectively capture these local correlations, thus excelling in the feature extraction of quantum states. Compared to fully connected neural networks, CNNs have higher computational efficiency. By sharing weights and using local connections, CNNs reduce the number of parameters and computational load, enabling more efficient handling of large-scale quantum data. We trained a CNN-based model to determine whether a two-qubit quantum state is entangled. Subsequently, we constructed test and validation sets to evaluate the model's performance. The results indicate that with a sufficient number of samples, it is entirely feasible to achieve efficient classification of quantum entanglement states by selecting a CNN and adopting appropriate feature extraction methods.

2. The article also extensively studies the model's performance under different noise conditions and finds that even at higher noise levels, the model still maintains a high accuracy rate, proving that it can resist noise interference to a certain extent and is robust. We explored the model's generalization ability and found that even when there are significant differences between the training and testing sets, the model still maintains good performance, indicating that this method has broad applicability.

参考文献总数:

 60    

馆藏号:

 硕070207/24003    

开放日期:

 2025-05-29    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式