中文题名: | 与Dunkl变换相关的不确定性原理及Bochner-Riesz算子的H^1_G有界性 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070101 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 调和分析及其应用 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-05-22 |
答辩日期: | 2024-05-15 |
外文题名: | Uncertainty Principle and H^1_G Boundedness of Bochner-Riesz Operator Associated with Dunkl Transform |
中文关键词: | Dunkl变换 ; Wigner变换 ; 不确定性原理 ; Hardy空间 ; Bochner-Riesz算子 |
外文关键词: | Dunkl theory ; Wigner transform ; Uncertainty principles ; Hardy spaces ; Bochner-Riesz operator |
中文摘要: |
Dunkl变换在数学和物理中有着重要的应用,它是经典Fourier变换的推广。Dunkl变换所基于的Dunkl核函数和Dunkl测度具有比经典指数函数和Lebesgue测度更复杂的构造,所以对Dunkl变换及相关对象的研究有一定难度。本文重点研究了与Dunkl变换相关的不确定性原理和Bochner-Riesz平均算子的有界性。不确定性原理是量子力学中的一个基本原理,反映了深刻的对偶关系;Bochner-Riesz猜想是调和分析中的四大猜想之一,与其相关的理论联系了数学中的多个分支。所以,对这两个主题的研究具有重要意义。 |
外文摘要: |
Dunkl transform plays a crucial role in Mathematics and Physics. It is a generalization of classical Fourier transform. The Dunkl kernel function and Dunkl measure which Dunkl transform is based on are more complicated than the classical exponential function and Lebesgue measure. Hence, it is more difficult to study Dunkl transform and some other subjects concerning it. This thesis mainly focuses on the uncertainty principle and boundedness of Bochner-Riesz operator associated with Dunkl transform. Uncertainty principle is a fundamental law in quantum mechanics. It reflects the Duality in nature and mathematics. Bochner-Riesz conjecture is one of four well-known conjectures in harmonic analysis. Several branches in Mathematics have connection with it. Thus, there is great significance in the research of these two aspects. |
参考文献总数: | 64 |
馆藏号: | 硕070101/24023 |
开放日期: | 2025-05-22 |