- 无标题文档
查看论文信息

中文题名:

 反卷积与傅里叶变换的应用    

姓名:

 陈一滔    

保密级别:

 公开    

学科代码:

 080714T    

学科专业:

 电子信息科学与技术    

学生类型:

 学士    

学位:

 工学学士    

学位年度:

 2010    

学校:

 北京师范大学    

校区:

 北京校区培养    

学院:

 信息科学与技术学院    

第一导师姓名:

 张钟军    

第一导师单位:

 北师大信科院    

提交日期:

 2010-06-01    

答辩日期:

 2010-05-12    

外文题名:

 Fourier transform and the application of deconvolution    

中文关键词:

 反卷积    

中文摘要:
科学观测的目的是获知对象的真实面貌,由于物理原理或技术条件的限制以及噪声的介入,我们常常只能获得一个降质的信号(包括图像)。信息传递、变换和应用的过程可能伴随信号的降质。信号复原是一类技术方法,它依据降质的观测来估计原来不失真的信号和图像。该技术的主要内容是反卷积;信号和图像估计;噪声抑制。反卷积和信号复原是信号处理技术中具有理论挑战性的分支。由于应用广泛,它一直是研究热点。本文强调了反卷积问题的物理起源、理论方法的要点、适应范围和限制; 由于水平和时间限制,内容仅限于信号处理、线性代数和随机过程的基础知识,反卷积的基本理论,一维信号反卷积的Levinson-Durbin算法和实现。
外文摘要:
The purpose is to learn scientific observations the true face of the object, as physics or technology constraints, and the involvement of noise, we often only get a degraded signal (including images). Information transmission, transformation and application process may be associated with lower quality signal. Signal recovery is a kind of technical approach, which lower the quality according to the original observations to estimate the signal and image without distortion. The main contents of the technology Deconvolution; signal and image estimation; noise suppression. Deconvolution and Signal Recovery is a signal processing technology branch of theoretical challenges. As widely used, it has been a research focus. This article emphasizes the physical origin of the problem of deconvolution, the main points of theoretical methods, scope and limits of adaptation; as the level and time constraints, the content is limited to signal processing, linear algebra and basic knowledge of stochastic processes, deconvolution of the basic theory, one-dimensional signal deconvolution of the Levinson-Durbin algorithm and implementation.
插图总数:

 0    

插表总数:

 0    

馆藏号:

 本071201/1039    

开放日期:

 2010-06-01    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式