中文题名: | 反卷积与傅里叶变换的应用 |
姓名: | |
保密级别: | 公开 |
学科代码: | 080714T |
学科专业: | |
学生类型: | 学士 |
学位: | 工学学士 |
学位年度: | 2010 |
学校: | 北京师范大学 |
校区: | |
学院: | |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2010-06-01 |
答辩日期: | 2010-05-12 |
外文题名: | Fourier transform and the application of deconvolution |
中文关键词: | |
中文摘要: |
科学观测的目的是获知对象的真实面貌,由于物理原理或技术条件的限制以及噪声的介入,我们常常只能获得一个降质的信号(包括图像)。信息传递、变换和应用的过程可能伴随信号的降质。信号复原是一类技术方法,它依据降质的观测来估计原来不失真的信号和图像。该技术的主要内容是反卷积;信号和图像估计;噪声抑制。反卷积和信号复原是信号处理技术中具有理论挑战性的分支。由于应用广泛,它一直是研究热点。本文强调了反卷积问题的物理起源、理论方法的要点、适应范围和限制; 由于水平和时间限制,内容仅限于信号处理、线性代数和随机过程的基础知识,反卷积的基本理论,一维信号反卷积的Levinson-Durbin算法和实现。
﹀
|
外文摘要: |
The purpose is to learn scientific observations the true face of the object, as physics or technology constraints, and the involvement of noise, we often only get a degraded signal (including images). Information transmission, transformation and application process may be associated with lower quality signal. Signal recovery is a kind of technical approach, which lower the quality according to the original observations to estimate the signal and image without distortion. The main contents of the technology Deconvolution; signal and image estimation; noise suppression. Deconvolution and Signal Recovery is a signal processing technology branch of theoretical challenges. As widely used, it has been a research focus. This article emphasizes the physical origin of the problem of deconvolution, the main points of theoretical methods, scope and limits of adaptation; as the level and time constraints, the content is limited to signal processing, linear algebra and basic knowledge of stochastic processes, deconvolution of the basic theory, one-dimensional signal deconvolution of the Levinson-Durbin algorithm and implementation.
﹀
|
插图总数: | 0 |
插表总数: | 0 |
馆藏号: | 本071201/1039 |
开放日期: | 2010-06-01 |