中文题名: | 危险废物填埋场阻隔性能长期演化与寿命预测 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 083002 |
学科专业: | |
学生类型: | 博士 |
学位: | 工学博士 |
学位类型: | |
学位年度: | 2019 |
校区: | |
学院: | |
研究方向: | 固废填埋污染控制 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2019-07-01 |
答辩日期: | 2019-07-01 |
外文题名: | long-term dynamics of barrier performance of hazardous waste landfill and its life prediction |
中文关键词: | |
中文摘要: |
填埋场是危险废物集中处置的主要设施,也是其环境风险集中发生的场所。当其达到寿命末期,主要功能单元性能退化,对危险废物及其有毒有害组分的阻隔能力下降,环境风险将愈加严重。开展危险废物填埋场(Hazardous waste landfill,HWL)性能长期退化和寿命预测研究,阐明其性能退化、风险演化和寿命特征,对于指导HWL长期维护管理、监测预警以及风险管控具有重要意义。我国危险废物填埋场寿命预期偏短,寿命到期后环境风险更大,开展寿命预测研究尤为迫切。
本文针对当前HWL寿命研究存在的“体系尚未建立”,“整体性能退化预测方法缺失”,“核心材料退化规律不清”等问题,围绕“基本构建HWL寿命预测体系和方法”这一核心目标,综合运用文献研究,理论分析、现场检测、室内试验、数学模拟等方法,开展危险废物填埋场寿命预测框架构建、关键部件-防渗系统高密度聚乙烯(High density polyethylene,HDPE)膜和导排系统导排介质的长期劣化规律和预测方法研究、代表性场景下的HWL整体性能长期演化和寿命预测3方面工作,主要成果和结论如下:
(1)开展了HWL寿命预测框架构建工作,通过理论分析和文献研究,梳理并明确了危险废物填埋场寿命的定义,并从功能失效和风险控制角度识别了其寿命终止的2种模式,及其对应的寿命预测指标(主、次防渗层渗漏速率)和指标阈值;通过FMMEA分析确定了影响其寿命的关键单元及其退化模式(三大防渗系统的HDPE膜的氧化老化和缺陷产生-演化,以及三大导排系统的导排介质淤堵);确定采用基于性能仿真模拟的框架作为HWL寿命预测框架,即以填埋场水文性能评估模型为工具耦合关键单元老化参数实现对寿命预测指标及其时间演变的模拟,结合寿命预测指标及指标阈值,确定危险废物填埋场寿命;
(2)针对HDPE膜氧化老化,开展了性能退化速率预测的关键参数-服役温度和老化动力学参数(Ea-活化能参数和A-碰撞因子)研究,通过文献数据收集-数据处理-模型拟合,构建了典型HDPE膜典型暴露条件下的老化动力学参数库(Ea和A);对HDPE膜填埋场服役温度过程进行了概化,构建了典型填埋场HDPE膜服役过程温度演进数据库;基于上述典型老化动力学参数和温度数据库,利用阿伦尼乌斯公式计算了不同服役温度过程不同暴露条件和HDPE膜特性条件下的HDPE膜抗氧化剂耗损期、氧化诱导期及半衰期长度,并分析了暴露条件和温度演进特征参数(峰值温度及峰值温度持续时间)对其性能退化的影响;
(3)针对HDPE膜缺陷产生和演化过程,开展其预测模型构建研究,建立了以初始缺陷数量、运行缺陷数量、性能退化速率和时间参数为关键参数的缺陷产生-演化过程预测模型;开展预测模型的关键参数-初始缺陷数量的确定方法研究,现场检测并统计分析了国内100余填埋场HDPE膜的初始缺陷特征,结果表明国内填埋场防渗系统HDPE膜平均初始缺陷数量为25.6个/公顷,服从参数为(25.62, 0.88)Gamma概率分布;对初始缺陷及其潜在影响因子开展相关分析,识别了主要影响因子为HDPE膜品牌、厚度、导排介质、防渗结构;构建了主要影响因子与初始缺陷的多元回归预测模型,通过参数检验和模型校验,证实构建的模型有效且能较为准确的预测安装漏洞密度和总漏洞密度-80%以上的样本预测误差小于2倍;
(4)针对导排介质淤堵,首次通过室内模拟实验研究并证实了HWL低有机质含量和高pH渗滤液环境下的淤堵行为,并探索了其淤堵时间演化规律,即时间演化上,呈现出明显的阶段性特征,在初期淤堵发展缓慢(淤堵孔隙率1-2%);中期淤堵逐渐发展(淤堵孔隙率10%左右),后期快速发展(淤堵孔隙率32-60%);基于淤堵试验获得的淤堵物质理化参数,进一步利用数学模型模开展填埋场尺度的淤堵演化特征研究,结果表明:湿润-半湿润气候条件下,典型HWL导排系统设计参数下,局部位置完全淤堵的时间(T0)在100年左右,整个导排系统完全淤堵的时间(T1)在300年左右;湿润区气候条件下,T0和T1分别缩短至26年和78年;雨水防渗系统HDPE膜老化导致渗的滤液产生量增加和导排负荷增大,将使T0和T1缩短2.3-2.6倍;
(5)基于构建的HWL寿命预测框架,耦合上述关键单元性能退化研究成果和填埋场水文过程评估模型(HELP),构建了HWL长期性能演化和寿命预测模型,并基于该模型开展了典型设计情景下的HWL寿命及其寿命控制因子与控制机制研究,结果表明:在湿润-半湿润气候条件下,初期(0-12年)HWL性能退化较慢(主、次防渗层渗漏速率分别增加16%和32%),且主要受导排介质淤堵控制;中期(12-62年)性能迅速退化(主、次防渗层渗漏速率分别增加4.8和27.1倍),主要由于该阶段堆体温度较高,HDPE膜迅速到达性能退化期,并开始快速退化造成;后期由于HDPE膜服役温度回归初始温度,性能退化速率下降;最终主防渗层的渗漏速率首先(第510年)达到其寿命阈值(5.68mm/年); 不同区域气候条件下危险废物填埋场寿命存在明显差异,最短只有38年(深圳),最长可达1130年(乌鲁木齐);不同气候条件下,导致危险废物填埋场寿命终止的原因不同,干旱区(乌鲁木齐)填埋场由于次级防渗层渗漏速率超过阈值而导致寿命终止,其他区域的填埋场均由于主防渗层渗漏速率超过阈值而导致寿命终止。
﹀
|
外文摘要: |
Landfill is the main facility for the centralized disposal of hazardous wastes, and also the place where major environmental risks often occur. When the hazardous waste landfill (HWL) reaches the end of its life, the performance of main functional units deteriorates, and the barrier ability to hazardous waste and its toxic and harmful components decreases, the environmental risk will become more serious. Understanding the long-term degradation and life expectancy of HWL is therefore of great significance for guiding HWL long-term maintenance and management, monitoring and early-warning, as well as risk control and management. The life expectancy of HWL in China is short, and the environmental risk is greater after the life expiration, so it is particularly urgent to carry out life prediction research.
Currently, a scarce of studies through has been carried out on the durability and service life of landfill components or materials, but none of them involves the life of HWL as whole. This paper is committed to filling this gap, by focusing on the core objective of "basic construction of HWL life prediction framework and method", and using literature research, theoretical analysis, field testing, laboratory tests, mathematical simulation and other methods, to carry out the life prediction framework of hazardous waste landfill, the long-term deterioration behavior and prediction method of HDPE membrane in barrier system layer and drainage medium of drainage and collection system. The main results and conclusions are as follows:
(1) The definition of the life of hazardous waste landfill is given; Two modes of end-of-life are identified from the perspective of functional failure and risk control, and the corresponding life prediction indicators (leakage rate of primary and secondary barrier system) and index thresholds are determined; In addition, through the FMMEA analysis, the key units affecting their life (the HDPE membrane in the capping system and barrier system, and the drainage medium of the drainage system) and their degradation modes are identified; The framework of HWL life prediction is determined,that is, the hydrological process assessment model of landfill is used to predict the life prediction indicators by coupling the parameter changes of main functional units, and the service life of landfill is predicted by combining the corresponding life index threshold.;
(2) The key point for the research of HDPE geomembrane oxidation is to determine the key parameters of Arrhenius model, including service temperature and aging kinetics parameters (Ea and A). Based on literature data collection, data processing and model parameter fitting, a database of aging kinetics parameters (Ea-activation energy parameter and A-collision factor) under typical exposure conditions of HDPE geomembrane was constructed, and the evolution process of HDPE service temperature is generalized and its typical value is given. Using the above-mentioned typical aging kinetic parameters and temperature database, the antioxidant depletion period, oxidation induction period and half-life length of different HDPE geomembranes under different exposure conditions were calculated by using Arenius formula; Based on the calculation results, the effects of HDPE geomembrane material properties, exposure conditions and temperature evolution characteristic parameters (such as peak temperature and its duration) on the aging rate of HDPE geomembrane were analyzed;
(3) The key point on the generation and evolution of defects in HDPE geomembrane is the construction of its prediction method. Through the literature research and theoretical analysis, the model for the predition of defect generation-evolution is constructed with the key paramters of initial defect number, the operation defects number, the degradation rate and the time; At the same time, the evaluation method is also established for the key parameters of the prediction model-the initial defect number. The initial defect characteristics of HDPE membranes in more than 100 landfills in China were detected and statistically analyzed, that is, the average initial defect number was 25.6#/ha, and the conform the probability distribution of Gamma with parameters (25.62, 0.88); Correlation analysis was carried out on the initial defects and their potential influencing factors, and the main influencing factors were identified as HDPE geomebrane types, thickness, drainage medium, anti-seepage structure. The multivariate regression prediction model of main influencing factors and initial defects was established. The results of model test verified the validity of the model, indicating that the model can accurately predict the installation density and total defect density-the prediction error of samples above 80% is less than 2 times;
(4) For the first time through the indoor simulation experiment, the clogging behavior of under HWL circustances with high pH and low organic matter in leachate was exploded. The result indicates that the clogging process showed obvious stage characteristics, slow development in the initial period (clogging porosity 1-2%, gradual development in the middle period (clogging porosity of about 10%) and rapid development in the later stage (clogging porosity 32-60%). Based on the physicochemical parameters of the clogging material obtained by the clogging experiment, the mathematical model model is used to carry out the study of the clogging evolution characteristics in the landfill scale. The results show that, for the the drainage system reasonably designed and conctructed, under the humid and semi-humid climatic conditions, the time of for the drainage layer to reach serious local siltation (T0) is 100 years, and the time to achieve overall siltation (T1) is 300 years. However, in the humid climate, T0 and T1 are shortened to 26 years and 78 years, respectively. In addition, the aging of HDPE geomembrane in capping system leads to the increase of leachate production, which then increases the dainaging load of the draining system, and ultimately reduces the T0 and T1 by 2.3-2.6 times;
(5) Based on the constructed framework for HWL life prediction and key unit performance degradation results, the HELP model was used as a tool to study the long-term performance evolution and life prediction of typical hazardous waste landfills. The results show that under humid and semi-humid climatic conditions, the degradation of HWL performance is slow in the initial (0-12 years) with only 16% and 32% increase in the leachate leakage from primary and secondary barrier system, respectively, and is mainly controlled by clogging; In the medium term (12-62 years), the performance deteriorated rapidly with 4.8 and 27.1 times increase in the leachate leakage from primary and secondary barrier system, respectively, mainly due to the high temperature of the landfill at this stage, and which lead the HDPE geomembrane quickly reached the STAGE III and began to degrade rapidly. In the later stage, the performance degradation rate of HWL decreased, mainly becuased the temperature of the landfill return to the initial temperature;
Under the above-mentioned degraded conditions, the HWL under humid and semi-humid climatic conditions eventually ends its life in the 510th year, because the leakage rate of the main anti-seepage layer reaches its life threshold (5.68mm/year); further research indicates that there are significant differences in the lifespan of hazardous waste landfills in different regional climates, with a minimum of 38 years (Shenzhen) and a maximum of 1130 years (Urumqi); In addition, under different climatic conditions, the reasons for the HWL reaching to its end of life are also different: the landfill in arid area (e.g.Urumqi) reaches to its end of life due to the leakage rate of the secondary barrier layer exceeding its threshold,while the landfills in other areas are mainly due to the the leakage rate of the primary barrier layer exceeding its threshold value.
﹀
|
参考文献总数: | 156 |
作者简介: | 徐亚,男,汉族,1985年11月出生于湖南省湘阴县。2008年毕业于长沙理工大学水利学院,获工学学士学位。同年考入北京师范大学攻读硕士学位,在地下水污染控制与修复教育部工程研究中心从事地下水数值模拟方面的研究,师从胡立堂教授,2011年7月毕业获得地下水科学与工程硕士学位。同年7月参加工作,在中国环境科学研究院从事固体废物污染控制与风险评估工作;2014年9月考入北京师范大学水科学研究院,成为中国环境科学研究院与北京师范大学水科学研究院联合培养博士研究生,师从王琪研究员,专业为环境工程,主要从事固体废物填埋风险管控研究。 |
馆藏地: | 图书馆学位论文阅览区(主馆南区三层BC区) |
馆藏号: | 博083002/19015 |
开放日期: | 2020-07-09 |