中文题名: | 基于RaSE的肝细胞癌特征基因筛选与疾病预测 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 025200 |
学科专业: | |
学生类型: | 硕士 |
学位: | 应用统计硕士 |
学位类型: | |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 数据科学与管理 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-06-09 |
答辩日期: | 2024-05-25 |
外文题名: | Hepatocellular Carcinoma Signature Gene Screening and Disease Prediction Using Random Subspace Ensemble |
中文关键词: | |
外文关键词: | Signature Gene ; HCC ; Random Subspace Ensemble ; Machine Learning |
中文摘要: |
肝细胞癌(Hepatocellular Carcinoma, HCC)是最常见的原发性肝癌,具有很高的发病率和死亡率。基因表达谱技术的出现,使得研究者能够对癌症组织和癌旁组织中的差异基因进行分析,筛选出与HCC相关的特征基因,这对于癌症的早期检测、预后和治疗来说具有重要意义。相比于传统统计方法,机器学习模型由于其较高的准确度,在特征基因选择领域发挥着越来越重要的作用。本研究采用前沿变量选择方法随机子空间集成(Random Subspace Ensemble, RaSE)进行HCC特征基因选择,并构建分类模型,对疾病进行分类预测。 |
外文摘要: |
Hepatocellular Carcinoma (HCC) is the most common primary liver cancer with high morbidity and mortality. The emergence of gene expression profiling technology has enabled researchers to analyze differential genes in cancer tissues and paracancerous tissues to screen for characteristic genes associated with HCC, which is important for early detection, prognosis and treatment of cancer. Compared to traditional statistical methods, machine learning models are playing an increasingly important role in the field of signature gene selection due to their higher accuracy. In this study, we used the cutting-edge variable selection method Random Subspace Ensemble (RaSE) for HCC feature gene selection and constructed a classification model to classify and predict the disease. |
参考文献总数: | 36 |
馆藏地: | 总馆B301 |
馆藏号: | 硕025200/24019Z |
开放日期: | 2025-06-11 |