中文题名: | 银表面等离激元对稀土材料的发光增强作用研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 070207 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2021 |
校区: | |
学院: | |
研究方向: | 光谱学 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2021-06-08 |
答辩日期: | 2021-05-31 |
外文题名: | LUMINESENCE ENHANCEMENT OF RARE EARTH MATERIALS BASED ON SILVER SURFACE PLASMON |
中文关键词: | 镧系稀土离子发光增强 ; 银表面等离激元 ; 发光玻璃 ; Judd-Ofelt理论 ; PMMA发光薄膜 |
外文关键词: | Luminescence enhancement ; Luminescent glass ; Silver surface plasmon ; Judd-Ofelt theory ; PMMA Luminescent film |
中文摘要: |
随着镧系稀土发光材料在各个领域的广泛应用,改善稀土离子的发光性能的研究引起了关注。在稀土发光材料中引入贵金属纳米结构来增强稀土离子的发光性能是一种较为常用的方法。贵金属纳米结构产生的局域表面等离激元共振影响着稀土离子发光中心周围的电磁场的变化,使金属纳米结构附近产生较强的局域电磁场。这些局域场能够在稀土离子发光过程中具有光子驱动的能力,使稀土离子的发光得到增强。本文系统地综述了镧系稀土离子的发光原理、基本光谱理论和金属表面等离激元对稀土离子发光增强作用的理论,并对银表面等离激元在掺铒发光玻璃和掺铕发光薄膜中的发光增强效果进行了实验研究。 本文的主要研究如下: 1、银金属纳米颗粒对铋化物发光玻璃和碲化物发光玻璃中Er3+离子发光的增强作用。通过对掺杂银纳米颗粒和不含银纳米颗粒的铋化物发光玻璃样品的光谱测量结果的分析,发现银表面等离激元的引入使样品的发光强度得到了增强,其中的增强倍数最大达到了2.15倍。随后,根据铋化物发光玻璃的吸收光谱利用Judd-Ofelt理论计算了Er3+离子各跃迁能级间的跃迁振子强度、能级寿命和积分发射截面等参数的值,发现例如2F9/2→4I15/2跃迁、4S3/2→4I15/2跃迁和2H11/2→4I15/2跃迁的振子强度和积分发射截面都具有较大的值,则这些跃迁过程中有可能产生激光。在掺铒碲化物玻璃的实验中,我们对三组不同的样品进行了光谱测量,三个样品分别为掺杂了银纳米颗粒的样品A和样品B,以及不掺杂银纳米颗粒的样品C。光谱测量结果同样表明银表面等离激元的引入增强了碲化物发光玻璃的发光强度,其中最大增强倍数为2.52倍。而银纳米颗粒的粒径大小也对发光增强效果有影响,银纳米颗粒的平均直径为80nm掺杂的样品A和50nm掺杂的样品B所表现出来的发光增强效果不同,荧光测量结果表明前者的发光增强更大。
2、Ag@SiO2核壳结构纳米颗粒对掺铕的发光薄膜中的Eu3+离子发光的增强作用。利用旋涂法制备了Ag@SiO2核壳纳米颗粒和稀土铕的配合物Eu(dbm)3phen共掺的聚甲基丙烯酸甲酯(PMMA)发光薄膜,其中样品的Ag@SiO2核壳结构纳米颗粒浓度不同,分别为0nM,0.5nM,0.8nM,1nM,5nM,10nM。通过分析薄膜样品的光谱测量结果,发现Ag@SiO2纳米颗粒的引入使薄膜的发光强度得到增强。对样品进行荧光寿命测量,发现在一定浓度范围内,随着Ag@SiO2纳米颗粒浓度的增加,薄膜样品的发光寿命也得到延长。发光的增强和寿命的延长随着浓度变化的趋势一致,均在掺杂Ag@SiO2纳米颗粒的浓度为5nM时达到最大增强,测量的激发光谱的最大增强因子为2.50,发射光谱的最大增强因子为2.15,寿命的最大值为559.1μs。最后讨论了银纳米颗粒和Ag@SiO2核壳结构纳米颗粒对荧光寿命不同的增强效应,前者使寿命变短,后者使寿命延长。银纳米颗粒由于没有二氧化硅壳层的隔离,与稀土离子之间距离太近,导致了荧光淬灭,因此寿命变短。 本论文通过引入银表面等离激元来改善发光材料中稀土离子的发光性能,展现了良好且规律的增强效果,并且实验的方法可操作性强,是一种具有良好应用前景的增强稀土发光材料的发光强度的方法。 |
外文摘要: |
With the widespread application of rare earth luminescent materials in various fields, and methods to improve the luminescence properties of rare-earth ions have become a research focus. The localized surface plasmon resonance of precious metal nanostructures changes the electromagnetic field around the luminescence center of rare earth ions, and generates a strong local electromagnetic field near the metal nanostructures. The electromagnetic field can have photon driving ability during the luminescence process of rare earth ions, so that the luminescence of rare earth ions can be enhanced. Three main categories introduced in this paper are the luminescence principle, basic spectroscopic theory of rare-earth ions, and the enhancement effect of metal surface plasmons on the luminescence of rare-earth ions. The main research of this paper is described and discussed as follows. 1、The luminescence enhancement effect of silver surface plasmon on the Er3+ ions in erbium-doped bismuth compound luminescent glass and telluride glass. The measurement results of absorption spectrum, excitation spectrum and fluorescence spectrum show that the introduction of plasmons on the silver surface increases the luminous intensity of the sample, and the maximum enhancement factor is 2.15. According to Judd-Ofelt theory, the transition oscillator intensity, energy level lifetime and integrated emission cross section between the transition energy levels of Er3+ ions are calculated. The oscillator strength and emission cross section of the 2F9/2→4I15/2 transition, S3/2→4I15/2 transition, and 2H11/2→4I15/2 transition have larger calculation results, so the laser light may be generated in these transitions. In the experiment of erbium-doped telluride glass, we performed spectral measurements on three different samples. They were sample A and sample B containing silver nanoparticles with sample C without silver nanoparticles. The introduction of silver surface plasmons also helps enhance the luminous intensity of telluride luminescent glass, and the maximum enhancement factor was 2.52. The size of the silver nanoparticles also has an impact on the luminescence enhancement effect. Sample A doped with silver nanoparticles with an average diameter of 80nm and the sample B doped with 50nm showed different luminescence enhancement effects. In this experiment, the enhancement effect of 80nm silver particles was greater. 2、The fluorescence enhancement effect of Ag@SiO2 core-shell structure on Europium-doped luminescent films. Polymethyl methacrylate (PMMA) luminescent films co-doped with Ag@SiO2 core-shell nanoparticles and Eu(dbm)3phen were prepared by spin-coating method. The doping concentration of Ag@SiO2 core-shell nanoparticles were different, and they were 0nM, 0.5nM, 0.8nM, 1nM, 5nM, 10nM. The spectrum measurement results of the thin film sample shows that the doping of Ag@SiO2 nanoparticles can enhance the fluorescence intensity of the thin film. The maximum enhancement factor of the measured excitation spectrum is 2.50, and the maximum enhancement factor of the emission spectrum is 2.15. Finally, the different enhancement effects of silver nanoparticles and Ag@SiO2 core-shell nanoparticles on the fluorescence lifetimes are discussed. The former reduced the fluorescence lifetime, and the latter prolonged the fluorescence lifetime. We deem that these different results are related to the fluorescence quenching caused by the close distance between the silver nanoparticles and the luminescent center. Silver surface plasmons improve the luminescence properties of rare earth ions in luminescent materials, and show a good regular enhancement effect. We provide a method with great application prospect to enhance the luminescent intensity of rare earth luminescent materials. |
参考文献总数: | 79 |
作者简介: | 攻读学位期间一作发表论文2篇,合作3篇 |
馆藏号: | 硕070207/21008 |
开放日期: | 2022-06-08 |