中文题名: | 再生核希尔伯特空间回归方法及其在数字人建模的应用 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081203 |
学科专业: | |
学生类型: | 硕士 |
学位: | 工学硕士 |
学位类型: | |
学位年度: | 2023 |
校区: | |
学院: | |
研究方向: | 虚拟现实与增强现实 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2023-06-12 |
答辩日期: | 2023-06-02 |
外文题名: | Reproducing Kernel Hilbert Space Regression Method with Applications to Digital Human Modeling |
中文关键词: | |
外文关键词: | Reproducing kernel hilbert space ; Manifold kernel reduced rank regression ; Shape analysis ; Mandibular point cloud reconstruction ; Motion compression and restoration |
中文摘要: |
再生核希尔伯特空间回归可有效地处理多元高维非线性的数据回归。数字人建模领域涉及人体相关的静态和动态数据描述,整个过程需要处理大量高维度非线性数据。故此研究专注于再生核希尔伯特空间回归方法中核降秩回归及高斯过程回归方法的拓展,并提出相关改进方法,以实现数字人建模中静态颅骨重构与动态运动压缩应用。具体工作内容为:提出流形核降秩回归方法,实现人体三维下颌骨重建,提高了重建任务精度;改进多任务高斯过程回归方法,用于人体运动建模和压缩,提高了三维骨架运动压缩率与重建精度;设计并实现了三维下颌骨重建及运动数据压缩重建系统。本文的主要创新点包括: |
外文摘要: |
Reproducing Kernel Hilbert Space (RKHS) regression is a powerful method for nonlinear data regression in high-dimensional multivariate datasets. Digital human modeling involves processing large amounts of high-dimensional nonlinear data related to the human body, including both static and dynamic data. This article focuses on expanding the research of kernel reduced rank regression and Gaussian process regression methods in RKHS regression, proposing relevant improvements for static skull reconstruction and dynamic motion compression applications in digital human modeling. Specifically, this work proposes a manifold kernel reduced rank regression method for achieving three-dimensional reconstruction of the human mandible, improving reconstruction accuracy. Additionally, an improved multi-task Gaussian process regression method is presented for human motion modeling and compression, enhancing the compression rate and reconstruction accuracy of 3D skeleton motion. Finally, a 3D mandibular reconstruction and motion data compression reconstruction system is designed and implemented. The main innovations of this article include: |
参考文献总数: | 82 |
馆藏号: | 硕081203/23014 |
开放日期: | 2024-06-12 |