中文题名: | 面向多领域的对话式推荐系统数据集 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 080901 |
学科专业: | |
学生类型: | 学士 |
学位: | 理学学士 |
学位年度: | 2023 |
校区: | |
学院: | |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2023-06-19 |
答辩日期: | 2023-05-10 |
外文题名: | Towards Multi-Domain Conversational Recommender System |
中文关键词: | |
外文关键词: | Conversational Recommender System ; Cross-Domain Recommendation ; Active Learning ; Semi-Automatic Annotation |
中文摘要: |
真实的推荐系统通常基于与用户的交互,以提升推荐精度和服务质量。对话式推荐系统基于自然语言,通过多轮对话来深入理解用户,以实现更精准的用户偏好建模与候选物品推荐,并通过生成高质量的回复来提升用户体验。在真实的应用场景中,往往涉及到用户在多个领域中的推荐。然而,现有的对话式推荐系统数据集通常只涉及单个领域物品的推荐,无法满足跨域推荐任务的需求。基于此,本文提出了一个跨领域的对话式推荐系统数据集CD-ReDial。我们利用预训练语言模型与用户评论、知识图谱等外部知识,经过从对话流到对话两阶段的数据构建过程,并采用基于主动学习的半自动标注方式,以较低成本获取高质量的数据集。实验结果表明,我们构建的数据集能够有效地解决跨域推荐的问题。 |
外文摘要: |
Real-world recommender systems often rely on interactions with users to improve recommendation accuracy and service quality. Conversational recommender systems enable in-depth understanding of users for more accurate user preference modeling and candidate item recommendation based on natural language and improve user experience by generating high-quality responses. In real-world application scenarios, recommendations are often needed in multiple domains. However, existing conversational recommender system datasets usually only involve single-domain item recommendation and cannot meet the requirements of cross-domain recommendation tasks. In this paper, we propose a cross-domain conversational recommender system dataset CD-ReDial. We leverage pre-trained language models and external knowledge such as user comments and knowledge graph to construct the dataset through a two-stage process: dialog flows à dialogs, and adopt a semi-automatic annotation based on active learning to acquire high-quality data at a low cost. Experimental results demonstrate the effectiveness of our dataset in addressing the problem of cross-domain recommendation. |
参考文献总数: | 58 |
馆藏号: | 本080901/23060 |
开放日期: | 2024-06-18 |