- 无标题文档
查看论文信息

中文题名:

 面向多领域的对话式推荐系统数据集    

姓名:

 汤昕宇    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080901    

学科专业:

 计算机科学与技术    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2023    

校区:

 北京校区培养    

学院:

 人工智能学院    

第一导师姓名:

 党德鹏    

第一导师单位:

 人工智能学院    

提交日期:

 2023-06-19    

答辩日期:

 2023-05-10    

外文题名:

 Towards Multi-Domain Conversational Recommender System    

中文关键词:

 对话式推荐系统 ; 跨域推荐 ; 主动学习 ; 半自动标注    

外文关键词:

 Conversational Recommender System ; Cross-Domain Recommendation ; Active Learning ; Semi-Automatic Annotation    

中文摘要:

真实的推荐系统通常基于与用户的交互,以提升推荐精度和服务质量。对话式推荐系统基于自然语言,通过多轮对话来深入理解用户,以实现更精准的用户偏好建模与候选物品推荐,并通过生成高质量的回复来提升用户体验。在真实的应用场景中,往往涉及到用户在多个领域中的推荐。然而,现有的对话式推荐系统数据集通常只涉及单个领域物品的推荐,无法满足跨域推荐任务的需求。基于此,本文提出了一个跨领域的对话式推荐系统数据集CD-ReDial。我们利用预训练语言模型与用户评论、知识图谱等外部知识,经过从对话流到对话两阶段的数据构建过程,并采用基于主动学习的半自动标注方式,以较低成本获取高质量的数据集。实验结果表明,我们构建的数据集能够有效地解决跨域推荐的问题。

外文摘要:

Real-world recommender systems often rely on interactions with users to improve recommendation accuracy and service quality. Conversational recommender systems enable in-depth understanding of users for more accurate user preference modeling and candidate item recommendation based on natural language and improve user experience by generating high-quality responses. In real-world application scenarios, recommendations are often needed in multiple  domains. However, existing conversational recommender system datasets usually only involve single-domain item recommendation and cannot meet the requirements of cross-domain recommendation tasks. In this paper, we propose a cross-domain conversational recommender system dataset CD-ReDial. We leverage pre-trained language models and external knowledge such as user comments and knowledge graph to construct the dataset through a two-stage process: dialog flows à dialogs, and adopt a semi-automatic annotation based on active learning to acquire high-quality data at a low cost. Experimental results demonstrate the effectiveness of our dataset in addressing the problem of cross-domain recommendation.

参考文献总数:

 58    

馆藏号:

 本080901/23060    

开放日期:

 2024-06-18    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式