- 无标题文档
查看论文信息

中文题名:

 基于时间序列模型的股票波动性分析    

姓名:

 江恩欢    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070101    

学科专业:

 数学与应用数学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2024    

校区:

 珠海校区培养    

学院:

 文理学院    

第一导师姓名:

 胡春华    

第一导师单位:

 文理学院    

提交日期:

 2024-06-13    

答辩日期:

 2024-05-11    

外文题名:

 Stock Volatility Analysis Based on Time Series Models    

中文关键词:

 股票波动性 ; 时间序列分析 ; ARIMA 模型 ; GARCH 模型    

外文关键词:

 Stock volatility ; Time series analysis ; ARIMA ; GARCH    

中文摘要:

股票市场的波动性一直是金融领域研究的热点之一。本研究旨在通过时

间序列分析方法,深入研究恒瑞医药股票的价格和波动性。首先,我们利用

ARIMA(2,1,2) 模型对股票价格进行建模和预测。经过参数估计和模型检验,

我们发现未来股票价格将呈现相对稳定的趋势,价格波动在一定范围内波动。

其次,我们引入 GARCH(1,1) 模型对股票收益率序列的波动性进行分析。通

过一系列统计检验和模型拟合,我们发现股票收益率序列存在显著的条件异

方差性。模型的有效性得到了 LB 检验的进一步验证,表明模型残差序列近

似为白噪声。最后,我们使用拟合的模型,对未来十天的波动率进行了预测,

并发现随着时间的增加,波动率呈下降趋势。

外文摘要:

Stock market volatility has always been a hotspot in the field of finance. This

study aims to delve into the price and volatility of Hengrui Medicine’s stock using

time series analysis methods. Firstly, we model and predict the stock price using

the ARIMA(2,1,2) model. Through parameter estimation and model testing, we find

that the future stock price will exhibit a relatively stable trend, with price fluctuations

within a certain range. Secondly, we introduce the GARCH(1,1) model to analyze

the volatility of the stock return series. Through a series of statistical tests and model

fittings, we find significant conditional heteroskedasticity in the stock return series.

The effectiveness of the model is further validated by the LB test, suggesting that

the model residual sequence approximates white noise. Finally, we used the fitted

model to forecast volatility for the next ten days and found that volatility tends to

decrease over time.

参考文献总数:

 26    

插图总数:

 8    

插表总数:

 7    

馆藏号:

 本070101/24188Z    

开放日期:

 2025-06-13    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式