- 无标题文档
查看论文信息

中文题名:

 复杂社会网络下的个体学习和决策    

姓名:

 李尚阳    

保密级别:

 公开    

学科代码:

 070201    

学科专业:

 物理学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2019    

学校:

 北京师范大学    

校区:

 北京校区培养    

学院:

 物理学系    

第一导师姓名:

 马天星    

第一导师单位:

 北京师范大学物理学系    

第二导师姓名:

 朱露莎    

提交日期:

 2019-06-27    

答辩日期:

 2019-05-15    

外文题名:

 Individual learning and decision making under complex social networks    

中文关键词:

 社会网络 ; 学习和决策 ; DeGroot模型 ; DDM模型    

外文关键词:

  social network learning and decision making DeGroot model DDM model    

中文摘要:

许多重要的经济领域中,信息的传播和交流对于整体经济运行具有重要 意义。社会个体受到信息的影响,不断分析周围人的信息并对其进行学习从 而更新自己的行为。理解社会系统中个体如何学习和决策对于更好的预测, 利用,干预和控制社会中的行为演化有着重要的意义和作用,可以为解决一 些实际的问题提供一些科学的管理策略和支持。 若将社会中的决策个体看作网络中的一个个节点,决策者的社会关系看 作社会网络中的连线,那么可以把整个社会系统抽象为社会网络。本文从社 会网络的角度来研究社会中个体的学习和决策行为,把个体的决策行为区分 为了学习过程和选择过程,分别对两个过程构建模型,并通过信念这个中 间桥梁把两个过程有机地结合在了一起。并通过结合具体的实验数据来和 模型预测进行比对,对数据进行了合理分析和处理,证明了degree weighting 的DeGroot 模型对于网络中的学习和决策有着更好的解释力,并且决策者的 决策时间和对于自己在网络中学习地效果和信念有着重要关系。

外文摘要:

In many important economic fields, the dissemination and exchange of information is of great significance to the overall economic situation. Individuals are influenced by information, they analyze the information of people around them and learning those to update their behavior. Understanding how individuals learn and make decisions in the social system has important implications and functions for better prediction, utilization, intervention, and control of society evolution. And it can provide some scientific management strategies and support for solving practical problems.

If the individual in society is regarded as a node in the network and the social relationship of the individual is regarded as a connection in the social network, then the whole social system can be abstracted into a social network. This paper studies the individual decision-making behavior in society from the perspective of social network, and divides the individual decision-making behavior into the learning process and the selection process. It constructs two processes separately and organically combines the two processes through the intermediate bridge of beliefs. By combining the specific experimental data to compare with the model prediction, the data is reasonably analyzed and processed, which proves that the degree weighting DeGroot model has better explanatory power for learning and decision making in the network, and decision time has an important relationship with the effects and beliefs of learning in the network.

参考文献总数:

 13    

馆藏号:

 本070201/19057    

开放日期:

 2020-07-09    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式