中文题名: | 四元数Stiefel流形的上同调自同态 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070101 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 代数拓扑 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-06-20 |
答辩日期: | 2024-05-17 |
外文题名: | Endomorphisms of cohomology of quaternionic Stiefel manifolds |
中文关键词: | 四元数 Stiefel 流形 ; 陈特征 ; - 理论 ; 表示环 |
外文关键词: | Quaternionic Stiefel manifolds ; Chern character ; -theory ; Representation ring |
中文摘要: |
对于拓扑空间 和 , 确定映射同伦集 [, ] 是代数拓扑领域的重 要问题. 对于奇异上同调和拓扑 - 理论, 我们有 映射 ∗ ∶ [, ] → (∗ ( ), ∗ ()) 和 ∗ ∶ [, ] → (∗ ( ), ∗ ()), 其 中 (∗ ( ), ∗ ()) 表示 ∗ ( ) 到 ∗ () 与 Adams 运算交换的同态集 合。 给定 Stiefel 流形 (ℍ ) 的一个连续自映射 ,它诱导了奇异上同调环的自 同态 ,这个同态在有理陈特征下 ℎ ⊗ ℚ ∶ ∗ ( (ℍ )) ⊗ ℚ → ∗ ( (ℍ ); ℚ) 对应了 (∗ ( (ℍ )), ∗ ( (ℍ )) 中的 = ℎ−1ℎ. 利用 是一 个整系数同态这一事实,我们可以得到 Stiefel 流形的整系数上同调自同态可以 被连续映射实现的条件. 本文首先计算了 (ℍ ) 的 - 理论,然后以此为基础计算了它的陈特征,并 给出了可以被连续自映射实现的 的线性部分需要满足的条件. 我们计算了一 些具体的例子,并利用 Smith 分解简化了计算结果. |
外文摘要: |
For topological spaces and ,to determine the set of homomorphisms [, ] is a big question in the field of algebraic topology.For the singular cohomology and -theory,we have Boardman maps ∗ ∶ [, ] → (∗ ( ), ∗ ()) and ∗ ∶ [, ] → (∗ ( ), ∗ ()) . Here (∗ ( ), ∗ ()) is the set of homomorphisms between ∗ ( ) and ∗ () which commute with the Adams operations. Giving a continuous self-map of quaternionic Stiefel manifolds (ℍ ) ,it induces a self-homomorphism of ∗ ( (ℍ )).We can find a = ℎ−1ℎ in (∗ ( (ℍ )), ∗ ( (ℍ )) because of the Chern character ℎ ⊗ ℚ ∶ ∗ ( (ℍ )) ⊗ ℚ → ∗ ( (ℍ ); ℚ).Using the fact that is a homomorphism with integral coefficients,we can get some conditions which are needed to make the homomorphism could be realized by a continuous self-map . In this paper ,we calculate the -theory of (ℍ ) first,then calculate the Chern character of it,and give the conditions that the linear part of which can be realized by continuous self-map needs to satisfy .We give some examples ,and use Smithdecomposition to simplify the results. |
参考文献总数: | 11 |
馆藏号: | 硕070101/24019 |
开放日期: | 2025-06-21 |