中文题名: | 几类结构种群模型的最优收获问题 |
姓名: | |
保密级别: | 公开 |
论文语种: | 英文 |
学科代码: | 070101 |
学科专业: | |
学生类型: | 博士 |
学位: | 理学博士 |
学位类型: | |
学位年度: | 2021 |
校区: | |
学院: | |
研究方向: | 常微分方程与动力系统 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2021-06-09 |
答辩日期: | 2021-06-09 |
外文题名: | Optimal harvesting for several types of structural population models |
中文关键词: | |
外文关键词: | Optimal harvesting ; Reserve area ; Age structure ; Herd behavior ; Predator-prey ; Size-stage-structured ; Maximum principle |
中文摘要: |
本文主要研究了几类结构种群模型的最优收获问题.本文共分为四章.第一章主要介绍所研究问题的历史背景与发展现状以及本文的主要工作, 并给出本文所需要的预备知识.
其中, x 和 y 分别为非保护区和保护区内食饵的密度, z 和 w 分别为非保护区和保护区内捕食者的密度. 在保护区内捕鱼是严格禁止的. 我们还考虑了相应的最优收获问题, 其中目标泛函代表捕获过程中获得的总经济效益. 首先, 利用不动点定理证明了模型解的存在唯一性. 然后, 通过求解目标泛函的极值点给出了最优收获策略实现的最优性条件. 接着, 利用 Ekeland 原理证明了最优收获策略的存在唯一性. 最后, 数值模拟表明, 建立海洋保护区确实有利于渔业资源的恢复, 增加鱼类的丰富度, 保护生物多样性和生态系统结构. 在第三章, 我们研究了一个带有羊群行为和年龄结构的捕食-食饵模型 其中捕食者 v 具有年龄结构, 而食饵 u 表现出羊群行为来抵御捕食者, 并且考虑了最优收获策略, 其中目标泛函表示收获过程中获得的总经济效益.首先, 利用不动点定理证明了模型正解的存在唯一性. 其次, 通过寻找目标泛函的极值点得到了实现最优收获策略的最优性条件. 接着, 利用 Ekeland 原理证明了最优收获策略的存在唯一性. 最后, 通过数值模拟展示了最优收获以及种群在最优收获下的动态行为. 在第四章, 我们研究了一个尺度-阶段-结构种群模型 其中 J 表示幼年种群的密度, A 表示成年种群的密度, 并且考虑了相应的最优收获问题. 首先证明了当最优收获努力度不连续时模型广义解的存在唯一性.接着, 证明了最优收获策略的存在性.进一步, 基于常微分方程最优控制问题中 Pontryagin 原理的想法, 推导出描述最优控制的最大值原理.最后, 通过采用一种后项 Euler 隐式有限-差分逼近的算法数值求解相应的最优系统模拟了种群的动力学行为. |
外文摘要: |
The thesis mainly studies the optimal harvesting problem of several types of structural
population models. This thesis consists of four chapters. The fifirst chapter mainly introduces the historical background and the recent development of the problems to be studied as well as the main contents of the dissertation, and gives some lemmas which will be used in proving the main results.
In Chapter 2, we study a predator-prey model for fifishery resource with reserve area and age structure:
where the variables x and y are the biomass densities of the prey fish species inside the unreserved and reserved areas, respectively. The variables z and w are the biomass densities of predator fish species inside the unreserved and reserved areas, respectively. Fishing in the reserved area is strictly prohibited. The corresponding optimal harvesting problem is considered, where the objective functional represents the total economic benefits obtained from the harvesting process. Firstly, the existence and uniqueness of the solution of the model are proved by means of the fixed point theorem. Then, the optimality conditions for achieving the optimal harvesting policy are given by solving the extremum point of the cost functional. Furthermore, the existence of a unique optimal harvesting strategy is demonstrated with the use of Ekeland's Principle. Finally, the numerical simulations indicate that the creation of marine reserves is indeed conducive to the recovery of fishery resources, increasing fish abundance and protecting biodiversity as well as ecosystem structure.
In Chapter 3, we study a predator-prey model with herd behavior and age structure: In Chapter 4, we study a size-stage-structured population model:
where J denotes the density of juvenile individuals and A stands for the number of adult population. The corresponding optimal harvesting problem is considered. Firstly, we prove the existence and uniqueness of generalized solution of the model while the optimal harvesting effort is discontinuous. Then, we demonstrate the existence of the optimal harvesting policy. Furthermore, we derive the maximum principle describing the optimal control by searching the extremum point of the cost functional. Finally, the dynamical behavior of the population is simulated by solving the corresponding optimality system numerically with an algorithm based on the method of backward Euler implicit finite-difference approximation.
|
参考文献总数: | 133 |
馆藏地: | 图书馆学位论文阅览区(主馆南区三层BC区) |
馆藏号: | 博070101/21009 |
开放日期: | 2022-06-09 |