- 无标题文档
查看论文信息

中文题名:

 优化过二硫酸盐活化体系联合SBR降解阿莫西林的效能及机理研究    

姓名:

 赵娟娟    

保密级别:

 公开    

学科代码:

 083001    

学科专业:

 环境科学    

学生类型:

 博士    

学位:

 工学博士    

学位类型:

 学术学位    

学位年度:

 2022    

校区:

 北京校区培养    

学院:

 水科学研究院    

第一导师姓名:

 孙寓姣    

第一导师单位:

 北京师范大学水科学研究院    

提交日期:

 2022-06-19    

答辩日期:

 2022-05-31    

外文题名:

 Performance and Mechanism Study of Amoxicillin Degradation by the Persulfate Activation System Optimization and Integration with SBR    

中文关键词:

 过二硫酸盐 ; 阿莫西林 ; 降解机理 ; 降解产物毒性分析 ; 高级氧化-SBR联合技术    

外文关键词:

 Persulfate ; Amoxicillin ; Degradation mechanisms ; Degradation intermediate biotoxicity ; Advanced oxidation and SBR integrated progress    

中文摘要:

    环境中残留的抗生素及其诱导产生的抗性基因已对人类健康和生态安全构成严重威胁。过硫酸盐高级氧化技术能快速、高效去除抗生素,但若达到抗生素完全矿化,需要消耗大量化学试剂和能量;生物法具有成本低的优势,但直接处理抗生素的效率较低,且易造成抗性基因转移扩散的风险。本文以典型β-内酰胺类抗生素阿莫西林为研究对象,通过热活化、光活化和改性活性炭催化过二硫酸盐(PS)高级氧化技术降解水中阿莫西林,借助液质联用、电子顺磁共振、ECOSAR预测和生物传感细胞检测等技术,研究三种PS活化体系降解水中阿莫西林的降解动力学、降解机理和降解产物毒性,优选出改性活性炭催化PS为预处理工艺;后续与序批式生物反应器(SBR)联合,结合高级氧化法与生物法互补的降解优势,强化去除阿莫西林及其降解产物。论文的主要研究成果如下:

    (1)通过热活化PS体系降解阿莫西林发现,在反应温度50 ℃、PS初始浓度10 mM、反应330 min时,100 μM阿莫西林降解率为91%,反应速率常数0.0071 min-1,表观活化能126.9 kJ·mol-1。热活化PS体系降解阿莫西林是羟基自由基和硫酸根自由基共同作用的结果,生成了23种降解产物,主要降解路径为自由基攻击阿莫西林分子中富电子的苯环、亚氨基、β-内酰胺环、碳硫键和氨基五条路径。反应330 min时体系检出4种降解产物。Acinetobacter baylyi ADP1_recA_lux生物传感细胞检测发现降解过程中溶液遗传毒性先增大再降低,表明有毒降解产物的生成并逐步降解。

    (2)采用光活化PS体系降解阿莫西林发现,在PS初始浓度2.5 mM、反应60 min时,100 μM阿莫西林降解率为93%,反应速率常数0.0375 min-1。光活化PS降解阿莫西林是羟基自由基、硫酸根自由基和单线态氧共同作用的结果,生成了22种降解产物,其中15种与热活化PS体系相同,主要降解路径与热活化PS体系相似。反应60 min时体系检出13种降解产物。阿莫西林降解过程中溶液遗传毒性先增大再降低。

    (3)制备改性活性炭催化剂,研究改性活性炭催化PS体系降解阿莫西林,发现在催化剂用量0.5 g·L-1、PS初始浓度1.0 mM、反应30 min时,100 μM阿莫西林去除率为96%,反应速率常数0.2385 min-1,表观活化能28.1 kJ·mol-1。改性活性炭表面产生的羟基自由基在阿莫西林降解过程中起主要作用,降解过程生成了14种降解产物,主要降解路径为自由基攻击阿莫西林分子中β-内酰胺环、硫原子、氨基和碳硫键四条路径。反应30 min时体系检出5种降解产物。阿莫西林降解过程中溶液遗传毒性明显降低。

    (4)对比分析热活化、光活化和改性活性炭催化PS三种活化体系,发现改性活性炭催化PS体系的氧化剂用量少且有效利用率高,反应速率常数大,降解产物种类少,降解30 min时溶液没有遗传毒性检出,因此优选出改性活性炭催化PS高级氧化技术进行水中阿莫西林的高效预处理。

    (5)采用改性活性炭催化PS联合SBR处理含阿莫西林污水,联合工艺SBR单元运行稳定,出水没有检出阿莫西林及其降解产物。Acinetobacter baylyi ADP1_recA_lux生物传感细胞检测表明出水没有遗传毒性检出。与独立SBR处理含阿莫西林污水相比,联合工艺的驯化期短,抗性基因blaTEM、blaOXA-1、blaOXA-10、blaOXA-30、blaFOX和整合子intI1相对丰度低,与多种抗性基因显著相关的门和属细菌种类少,降低了多重抗性基因的潜在风险。

    改性活性炭催化PS和SBR生物法联合技术结合了高级氧化法高效开环、降低抗生素生物毒性的优势和生物法安全、彻底去除降解产物的优势,实现了水中阿莫西林及其降解产物的高效去除,降低了抗生素抗性基因扩散风险。本研究解析了水中阿莫西林的多种降解路径与产物形成机制,揭示了阿莫西林降解过程中毒性变化规律,探明了高级氧化-SBR联合技术去除阿莫西林机制,为高效去除水环境中抗生素提供了新的技术思路和理论参考。

 

外文摘要:

    Antibiotic residue and antibiotic resistance genes in the environment pose a significant threat to human health and ecological environment. Advanced oxidation processes based on sulfate radicals are widely applied to degrade antibiotics in wastewater efficiently. Problems exist in more energy and chemical reagent consumption for antibiotic complete mineralization. The biological treatments have cost advantage, while the efficiency is low. This project researches the amoxicillin degradation by persulfate activated via the heat, light and environment-friendly Fe-AC composite, which is chosen as the optimal pre-treatment process. The amoxicillin degradation kinetics, mechanisms, and biotoxicity are investigated by LC-MS/MS, EPR, ECOSAR and whole-cell biosensor. The integrated progress of persulfate activation by Fe-AC and sequencing batch reactor (SBR) to attain the efficient and complete removal of amoxicillin and its degradation intermediates. The main research results are as follows:
    (1) Oxidative degradation of amoxicillin in aqueous solution by thermally activated persulfate is investigated. When [AMO]0 is 100 μM, reaction temperature is 50 ℃, [PS]0 is 10 mM, and degradation time is 330 min, the degradation efficiency and rate are 91% and 0.0071 min-1, respectively. The apparent activate energy is 126.9 kJ·mol-1. Both sulfate radicals and hydroxyl radicals take part in amoxicillin degradation. There are 23 sorts of degradation intermediates during amoxicillin degradation by thermally activated persulfate. The 5 possible degradation pathways are proposed, including aromatic ring, imino group, β-lactam ring, C-S bond and amino group attacked by radicals. There are 4 sorts of degradation intermediates tested at the degradation time of 330 min. The Acinetobacter baylyi ADP1_recA_lux bioreporters show the genotoxicity of the degradation solution firstly increases and then decreases that could be attributed to the formation and subsequent disappearance of the toxic degradation intermediates.
    (2) Oxidative degradation of amoxicillin in aqueous solution by persulfate activated via light is investigated. When [AMO]0 is 100 μM, [PS]0 is 2.5 mM, and degradation time is 60 min, the degradation efficiency and rate are 93% and 0.0375 min-1, respectively. The sulfate radicals, hydroxyl radicals, and singlet oxygen contribute to the degradation of amoxicillin. There are 22 sorts of degradation intermediates tested during amoxicillin degradation, 15 of which are the same with the thermally activated persulfate. The main degradation pathways are similar to that of the thermally activated persulfate system. There are 13 sorts of degradation intermediates tested at the degradation time of 60 min. The genotoxicity of the degradation solution firstly increases and then decreases.
    (3) Fe-AC is prepared as an efficient catalyst for activating persulfate to degrade amoxicillin. When [AMO]0 is 100 μM, catalyst dosage is 0.5 g·L-1, [PS]0 is 1.0 mM, and degradation time is 30 min, the degradation efficiency and rate are 96% and 0.2385 min-1, respectively. The apparent activation energy is calculated to be 28.1 kJ·mol-1 using the Arrhenius equation. The surface-adsorbed hydroxyl radicals play significant roles in amoxicillin degradation. There are 14 sorts of degradation intermediates tested during amoxicillin degradation. The 4 possible degradation pathways are proposed, including β-lactam ring, S atom, amino group, and C-S bond attacked by radicals. There are 5 sorts of degradation intermediates tested at the degradation time of 30 min. The genotoxicity of the degradation solution decreases during amoxicillin degradation.
    (4) The comparison of the three persulfate activation systems is investigated. The system of activated persulfate by Fe-AC needs no energy, persulfate consumption is lowest, the pseudo-first-order rate constant is highest, and fewest sorts of degradation intermediates are produced. The genotoxicity is below the detection line at the degradation time of 30 min. Therefore, persulfate activation by Fe-AC is chosen as the optimal pre-treatment process.
    (5) The integrated progress of persulfate activation by Fe-AC and SBR is investigated to degrade amoxicillin and its degradation intermediates. The SBR in the integrated progress runs stably, and there is no amoxicillin and its degradation intermediates tested by LC-MS/MS in the effluent. The Acinetobacter baylyi ADP1_recA_lux bioreporters show the genotoxicity of the integrated progress is below the detection line. The adaptation period is much shorter, the relative abundance of blaTEM, blaOXA-1, blaOXA-10, blaOXA-30, blaFOX and intI1 is lower in the integrated progress than that in the separate SBR. There are fewer Phylum and Genus bacterial species significantly associated with multiple resistance genes in the integrated progress than the separate SBR, therefore the integrated progress reduces the potential risk of multiple resistance genes.
    This project optimizes the persulfate activation systems by the heat, light and Fe-AC for amoxicillin degradation, and Fe-AC/PS is chosen as the optimal pre-treatment process. The integrated progress of persulfate activation by Fe-AC and SBR combines the advantages of efficient ring opening and toxicity reduction by advanced oxidation method as well as safe and complete degradation of biological treatment. This progress via the in-depth analysis of the degradation pathways, reaction mechanisms, the degradation intermediate toxicity and advanced oxidation-biological integrated treatment mechanism, will provide new technical ideas and theoretical reference for the efficient and rapid removal of antibiotics in the water environment.

 

参考文献总数:

 253    

馆藏地:

 图书馆学位论文阅览区(主馆南区三层BC区)    

馆藏号:

 博083001/22030    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式