- 无标题文档
查看论文信息

中文题名:

 二硫化钼基复合相变材料的可控制备与功能研究    

姓名:

 刘盼盼    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082703    

学科专业:

 核技术及应用    

学生类型:

 博士    

学位:

 工学博士    

学位类型:

 学术学位    

学位年度:

 2023    

校区:

 北京校区培养    

学院:

 核科学与技术学院    

研究方向:

 先进功能材料、先进能源材料    

第一导师姓名:

 王戈    

第一导师单位:

 核科学与技术学院    

提交日期:

 2023-06-25    

答辩日期:

 2023-06-01    

外文题名:

 CONTROLLABLE PREPARATION AND FUNCTIONALITY OF MOLYBDENUM DISULFIDE BASED COMPOSITE PHASE CHANGE MATERIALS    

中文关键词:

 相变材料 ; 二硫化钼 ; 金属有机骨架 ; 热能存储 ; 功能集成 ; 光热转换 ; 微波吸收 ; 抗菌    

外文关键词:

 Phase change materials ; MoS2 ; Metal-organic frameworks ; Thermal energy storage ; Multi-function integration ; Solar-thermal energy conversion ; Microwave absorption ; Anti-bacteria    

中文摘要:

相变材料(Phase change materials,PCMs)作为一种先进的潜热存储材料,在过去的几十年里在电子热管理、工业余热回收和太阳能热利用等热相关应用领域取得了丰硕的研究成果。近年来,开发高效稳定的光热转换复合PCMs及探究PCMs的前沿功能应用成为极具潜力的研究方向。二硫化钼(Molybdenum sulfide,MoS2)兼具物理、化学、光学、电学和生物等方面的独特性质,在能量转换和存储、电磁吸收/屏蔽和生物医学等领域得到了广泛的探索。本文以2D MoS2纳米材料为核心,围绕多级自组装、原位锚定和跨维度耦合等策略,从优化组分配比、调节微观结构及优化储能单元选择入手,系统研究了以组分和结构为导向的光热转换复合PCMs的构效关系,提出了多组分协同增强光热效应的新方法,建立了高效光热转换与存储一体化的复合PCMs的合成新策略,揭示了光热转换复合PCMs的光热转换协同增强机制。基于材料的多功能应用,进一步开发了具有热管理功能的微波吸收复合PCMs,实现了在集成化电子器件热管理领域的应用;制备了具有光诱导杀菌功能的复合PCMs,利用PCMs的热调节特性,一定程度上减少了对正常组织的损害,为构建前沿多功能复合PCMs提供了新思路。具体研究内容如下:

(1)将2D MoS2纳米片原位生长在1D碳纳米管(CNTs)表面构筑了具有核鞘协同结构的MoS2@CNTs,制备了兼具光热转换和微波吸收能力的双重功能复合PCMs。1D CNTs连接2D MoS2构建的3D网络可以促进光子、声子和电子的传输和对电磁波及光的多重反射,实现MoS2和CNTs在光热转换和微波吸收性能上的协同增强。丰富的硫空位缺陷耦合大量的π电子,使复合PCMs在全光谱范围内具有优异的光吸收性能,光热转换效率达到94.97%。此外,复合PCMs在厚度仅为2 mm时具有-28 dB的优异微波吸收性能,同时,复合PCMs具有较高的相变焓(101.60 J/g)和增强的热导率(比纯PW提高了84%)。因此,复合PCMs兼备优异的热管理能力和微波吸收性能,可作为高效微波吸收热管理材料,在电子热管理和微波能量耗散方面具有独特优势。该工作提出的功能集成设计策略为开发先进的微波吸收复合PCMs提供了建设性参考。

(2)利用ZIF67衍生金属/碳复合物作光热功能和磁功能组分,构建了具有纳米花结构的Co/C包覆MoS2纳米复合材料,制备了兼具高效光热转换和微波吸收能力的双重功能复合PCMs。MoS2纳米片促进了Co金属纳米颗粒的分散,有利于发挥多组分的协同作用。0D Co金属纳米颗粒的局域表面等离子共振效应、碳层的共轭效应以及2D MoS2的强光热效应的协同作用使复合PCMs具有优异的光热转换性能,光热转换效率高达95.19%。另外,在介电损耗和磁损耗的协同机制下,复合PCMs表现出优异的微波吸收性能,在厚度仅为3 mm时最小反射损耗达-57.15 dB,有效吸收带宽为3.86 GHz。该工作提出的组分协同设计策略为制备高性能光热和微波吸收增强的复合PCMs提供了可靠参考。

(3)将ZIF8原位生长在MoS2纳米片设计了一种具有光热效应和增强光催化性能的生态友好型光催化异质结杂化材料MoS2@ZIF8,制备了兼具光热转换和抗菌能力的双重功能复合PCMs。复合PCMs凭借MoS2优异的光热效应,光热转换效率可达91.51%。ZIF8的引入在界面处形成内置电场,促进了光生电子-空穴对的分离,提高了活性氧产率,增强了光动力抗菌治疗效果,同时ZIF8可释放大量的Zn2+有助于伤口愈合。光热与光动力的联合抗菌模式可以增强材料的抑菌效果,复合PCMs的抗菌效率达到98.30%,可替代抗生素治疗金黄色葡萄球菌。同时,复合PCMs能够吸收光疗时产生的大量热量,防止温度过高,减少了对周围正常组织的损伤。该工作提出的功能集成策略为开发杀菌功能的光热复合PCMs提供了新思路。

外文摘要:

Phase change materials (PCMs), as an advanced latent heat storage material, have achieved fruitful research results in the past decades in heat-related applications such as electronic thermal management, industrial waste heat recovery and solar thermal utilization. In recent years, the development of highly efficient and stable composite PCMs for photothermal conversion and the exploration of cutting-edge functional applications of PCMs have become highly promising research directions. Molybdenum disulfide (MoS2) exhibits unique physical, chemical, optical, electrical, and biological properties, and has been widely explored in the fields of energy conversion and storage, electromagnetic absorption/shielding, and biomedicine. In this paper, we systematically investigate the conformational relationships of component- and structure-oriented composite PCMs for photothermal conversion based on 2D MoS2 nanomaterials, and propose a new method for multi-component synergistic enhancement of photothermal effect around multi-level self-assembly, in-situ anchoring and cross-dimensional coupling strategies, starting from optimizing the composition ratio, adjusting the microstructure and optimizing the selection of energy storage units, and establishing an efficient photothermal conversion and storage integration. A new strategy for the synthesis of composite PCMs with high efficiency in photothermal conversion and storage was established, and the synergistic enhancement mechanism of photothermal conversion of composite PCMs was revealed. Based on the multifunctional application of the material, we further developed microwave absorption composite PCMs with thermal management function and realized the application in the field of thermal management of integrated electronic devices. We prepared the composite PCMs with photo-induced sterilization function and utilized the thermal regulation property of PCMs to reduce the damage to normal tissues to a certain extent, which provided a new idea for the construction of cutting-edge multifunctional composite PCMs. The specific studies are as follows:

(1) The 2D MoS2 nanosheets were grown in situ on the surface of 1D carbon nanotubes (CNTs) to construct MoS2@CNTs with a core-sheath synergistic structure to prepare dual-functional composite PCMs with both photothermal conversion and microwave absorption capabilities. 1D CNTs connected to 2D MoS2 to build a 3D network that can facilitate the transport of photons, phonons and electrons and the multiple reflections of electromagnetic waves and light to achieve synergistic enhancement of MoS2 and CNTs in photothermal conversion and microwave absorption performance. The abundant sulfur vacancy defects coupled with a large number of π-electrons enable the composite PCMs to have excellent light absorption performance in the full spectral range with a photothermal conversion efficiency of 94.97%. In addition, the composite PCMs have excellent microwave absorption performance of -28 dB at a thickness of only 2 mm, while the composite PCMs have a high enthalpy of phase change (101.60 J/g) and enhanced thermal conductivity (84% higher than that of pure PW). Therefore, the composite PCMs possess both excellent thermal management capability and microwave absorption performance, and can be used as efficient microwave absorption thermal management materials with unique advantages in electronic thermal management and microwave energy dissipation. The functionally integrated design strategy proposed in this work provides a constructive reference for the development of advanced microwave absorption composite PCMs.

(2) Co/C-coated MoS2 nanocomposites with nanoflower structure were constructed using ZIF67-derived metal/carbon complexes as the photothermal functional and magnetic functional components to prepare dual-functional composite PCMs with both efficient photothermal conversion and microwave absorption capabilities. The MoS2 nanosheets promoted the dispersion of Co nanometallic particles, which was conducive to the synergistic effect of multiple components. 0D Co nanometallic particles' local surface plasmon resonance effect, the conjugation effect of carbon layer and the strong photothermal effect of 2D MoS2 synergistically make the composite PCMs have excellent photothermal conversion performance with the photothermal conversion efficiency of 95.19%. In addition, the composite PCMs exhibit excellent microwave absorption performance under the synergistic mechanism of dielectric loss and magnetic loss, with a minimum reflection loss of -57.15 dB and an effective absorption bandwidth of 3.86 GHz at a thickness of only 3 mm. The synergistic design strategy of components proposed in this work provides a reliable reference for the preparation of high-performance photothermal and microwave absorption-enhanced composite PCMs.

(3) An eco-friendly photocatalytic heterojunction hybrid material MoS2@ZIF8 with photothermal effect and enhanced photocatalytic performance was designed by in situ growth of ZIF8 on MoS2 nanosheets to prepare dual-functional composite PCMs with both photothermal conversion and antibacterial ability. The composite PCMs can achieve a photothermal conversion efficiency of 91.51% by virtue of the excellent photothermal effect of MoS2. The introduction of ZIF8 forms a built-in electric field at the interface, which promotes the separation of photogenerated electron-hole pairs, increases the rate of reactive oxygen species production and enhances the photodynamic antibacterial treatment effect, while ZIF8 can release a large amount of Zn2+ to help wound healing. The combined antibacterial mode of photothermal and photodynamic can enhance the antibacterial effect of the material, and the antibacterial efficiency of the composite PCMs reaches 98.30%, which can replace antibiotics for the treatment of Staphylococcus aureus. Meanwhile, the composite PCMs can absorb a large amount of heat generated during phototherapy to prevent excessive temperature and reduce the damage to the surrounding normal tissues. The functional integration strategy proposed in this work provides a new idea for developing photothermal composite PCMs with bactericidal functions.

参考文献总数:

 213    

馆藏地:

 图书馆学位论文阅览区(主馆南区三层BC区)    

馆藏号:

 博082703/23004    

开放日期:

 2024-06-24    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式