- 无标题文档
查看论文信息

中文题名:

 无机异质结构材料电催化性能研究:第一性原理计算    

姓名:

 王晓锐    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 070304    

学科专业:

 物理化学(含化学物理)    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2020    

校区:

 北京校区培养    

学院:

 化学学院    

研究方向:

 电催化材料计算    

第一导师姓名:

 朱嘉    

第一导师单位:

 北京师范大学化学学院    

提交日期:

 2020-06-22    

答辩日期:

 2020-06-22    

外文题名:

 Electrocatalytic Water Splitting Performance of Inorganic Heterostructure Materials: A First-principle Study    

中文关键词:

 氢析出反应 ; 氧析出反应 ; 电解水制氢 ; 异质结构电催化剂 ; 二硫化钼 ; 硫化镍 ; 第一性原理计算    

外文关键词:

 Hydrogen evolution reaction ; Oxygen evolution reaction ; Hydrogen production by electrolysis of water ; Heterostructure electrocatalyst ; Molybdenum disulfide ; Nickel sulfide ; First-principle calculations    

中文摘要:

将可持续可再生能源收集技术与电化学水分解技术结合生成氢燃料,正成为当前解决能源危机最有前途的方法之一。要实现水的电催化分解,很大程度上取决于两极反应:氢析出反应(hydrogen evolution reaction, HER)和氧析出反应(Oxygen evolution reaction, OER),因此,开发具有低成本、高活性和耐用性的电催化剂至关重要。近来,各种各样的异质结构催化剂脱颖而出,显示出比同种单组分催化剂更优异的催化水分解性能。硫化镍Ni3S-2材料成本低廉合成简单,且有着潜在的电催化性能,硼酸盐阴离子掺杂是一种有效改善OER和HER的方法,掺杂后形成Ni3S-2 / Ni3(BO3)2异质结构有望改善Ni3S-2的低催化性能。过渡金属硫化物 MoS2作为备受关注的电催化材料,其析氢性能始终受到少活性位点、低导电性等因素的限制。利用金属Mo相导电性强的优点,可以合成MoS2/Mo异质结构,作为有希望的MoS2基电催化剂。本论文中,基于第一性原理的量子计算方法,系统研究了Ni3S-2 / Ni3(BO3)2异质结构体系以及MoS2/Mo异质结构体系的HER和OER电催化性质,采用H原子吸附吉布斯自由能值推测HER催化活性,采用计算所得OER吉布斯自由能能图推测其电势决定步骤和理论过电位。结果表明:(1)Ni3S-2/Ni3(BO3)2异质结构表面HER催化活性优于单组分的催化活性,形成异质结有利于促进各组分表面的氢吸附能力向最佳值变化,以此改善整体表面的电催化活性。(2Ni3S-2/Ni3(BO3)2异质结构上形成的界面上有两个OER反应位点,其中一个位点的理论过电位远低于单组分Ni3S-2和单组分Ni3(BO3)2,由此可以推测Ni3S-2/Ni3(BO3)2异质结构体系OER催化活性较高,有望成为性能优越的OER电催化剂。(3)形成MoS2/Mo异质结构导致Mo相基面的活性位点发生变化,而对MoS2相基面的活性位点没有影响,同时形成的复合边缘面上,S原子为主要活性位点。(4)在四种不同构型MoS2/Mo中,三种构型2H-MoS2/Mo(0 0 1)2H-MoS2/Mo(1 1 0)1T-MoS2/Mo(1 1 0)均出现 ?GH*十分接近于零的活性位点,1T-MoS2/Mo(0 0 1)的活性位点也能够达到相比单组分MoS2-更接近零的值,说明形成MoS2/Mo异质结构可以很好的提升催化剂的HER活性。

外文摘要:
Combining sustainable and renewable energy collection technologies with electrochemical water splitting technology to generate hydrogen fuel is becoming one of the most promising methods to solve the energy crisis. The electrocatalytic decomposition of water depends largely on two reactions: hydrogen evolution reaction (HER) and oxygen evolution reaction (Oxygen evolution reaction, OER). Therefore, the development of electrocatalysts with high activity and durability is crucial. Recently, various heterostructure catalysts have stood out, showing better performance in catalyzing water-splitting than single-component catalyst. Nickel sulfide (Ni3S-2) materials are low-cost and simple to synthesize, which have potential to be great electrocatalysis. Borate anion doping is an effective method to improve OER and HER. The resulting heterostructure Ni3S-2/Ni3(BO3)2 is expected to improve the low electrocatalytic activity of Ni3S-2. Molybdenum disulfide (MoS2) has been used as electrocatalyst material that has attracted much attention. However, its HER performance is limited by its few active sites and low conductivity. Taking advantage of the strong conductivity of the metal Mo phase, MoS2 / Mo heterostructure can be a promising MoS2-based HER electrocatalyst. In this paper, based on the first-principles quantum calculation method, we systematically studied the HER and OER electrocatalytic properties of Ni3S-2/Ni3(BO3)2 system and MoS2 / Mo system, using H adsorption Gibbs free energy value to study their HER catalytic activity. And the calculated OER Gibbs free energy diagram was used to determine its rate-determing step and theoretical overpotential. The results show that: (1) The catalytic activity of HER on the surface of Ni3S-2/Ni3(BO3)2 heterostructure is better than that of single component, because that the formation of heterojunction is conducive to change the hydrogen adsorption Gibbs free energy of each component surface to the optimal value. (2) There are two OER reaction sites on the interface area of  Ni3S-2/Ni3(BO3)2 heterostructure, and the theoretical overpotential of one site is much lower than that of single-component Ni3S-2 and single-component Ni3(BO3)2, it can be speculated that the Ni3S-2/Ni3(BO3)2 heterostructure system has high OER catalytic activity which is expected to become an excellent OER electrocatalyst. (3) The formation of MoS2/Mo heterostructure leads to changes in the active sites of the Mo-phase basal plane, but has no effect on the active sites of the MoS2-phase basal plane. At the same time, the S edge is the main active site on the composite edge surfaces. (4) Among the four different configurations of MoS2/Mo, three configurations including 2H-MoS2/Mo(0 0 1), 2H-MoS2/Mo (1 1 0) and 1T-MoS2/Mo (1 1 0) all possess active sites with ΔGH* very close to zero, and the active site of 1T-MoS2/Mo(0 0 1) also has ΔGH* value closer to zero than the single component MoS2. This shows that the formation of MoS2/Mo heterostructure can improve the HER activity of the catalyst.
参考文献总数:

 95    

作者简介:

 北京师范大学化学学院硕士研究生    

馆藏号:

 硕070304/20022    

开放日期:

 2021-06-22    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式