中文题名: | L^2-扰动Navier-Stokes 方程的部分正则性 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070101 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 偏微分方程及其应用 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-05-31 |
答辩日期: | 2024-05-24 |
外文题名: | The Partial Regularity of Navier-Stokes Equations Under $L^2$-Perturbation |
中文关键词: | Navier-Stokes方程 ; Landau解 ; L^2-扰动 ; 温和解 ; 部分正则性 |
外文关键词: | Navier-Stokes system ; Landau solutions ; L^2-perturbation ; Mild solutions ; Partial regularity |
中文摘要: |
本文考虑Navier-Stokes 方程稳态解的扰动问题. Landau解是轴对称,(-1)-齐 次显式稳态解,在ℝ3中除原点外都是光滑的. 我们将研究Landau解2-扰动问 题的全局2-弱解关于时间的部分正则性. 为此,我们首先考虑了温和解的局部 存在性和唯一性,并介绍了类似于Navier-Stokes方程的弱强唯一性定理. 因为温 和解唯一并有更高的正则性,所以可被视为一族特殊的强解. 我们使用温和解来 研究2-弱解,并最终得到了部分正则性结果. |
外文摘要: |
In this paper, we consider perturbed Navier-Stokes system around Landau solu tions. These explicit stationary solutions are axisymmetric and homogeneous of degree −1 in ∞(ℝ3\{0}) and have exactly one singularity at the origin. We will study the partial regularity about time of Navier-Stokes equations under 2-perturbations. For our purpose, we consider the local existence and uniqueness of mild solutions by providing complete proofs and a weak-strong uniqueness theorem that is analogous to the one for the Navier-Stokes system. Mild solutions can be considered a special family of strong solutions since the solutions are unique and more regular. We use mild solu tions to study the global-in-time 2-weak solution of perturbed Navier-Stokes system and obtain the partial regularity result. |
参考文献总数: | 27 |
馆藏号: | 硕070101/24047 |
开放日期: | 2025-05-31 |