- 无标题文档
查看论文信息

中文题名:

 钛基锂离子筛吸附剂与银基抗菌剂的制备与性能研究    

姓名:

 马婷婷    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070301    

学科专业:

 无机化学    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2024    

校区:

 北京校区培养    

学院:

 化学学院    

研究方向:

 吸附材料    

第一导师姓名:

 贾志谦    

第一导师单位:

 化学学院    

提交日期:

 2024-06-26    

答辩日期:

 2024-05-29    

外文题名:

 PREPARATION AND PERFORMANCE OF TITANIUM-BASED LITHIUM ION SIEVE ADSORBENT AND SILVER-BASED ANTIBACTERIAL AGENT    

中文关键词:

 锂离子吸附剂 ; 金属掺杂 ; 聚合物包覆 ; 微米银 ; 抗菌    

外文关键词:

 Lithium ion adsorbent ; Metal doping ; Polymer coating ; Micrometer silver ; Antibacterial    

中文摘要:

针对卤水中锂离子的富集分离以及工艺体系长效抗菌问题,研究开发具有高吸附性能和循环稳定性的先进吸附材料以及长效抗菌材料,具有科学意义和重要应用价值。本文基于实际应用需求,采用固相法制备了兼具高吸附容量和循环稳定性的掺杂型单斜偏钛酸锂离子筛吸附剂;采用固相法制备了尖晶石型钛酸锂离子筛吸附剂,提高了锂离子吸附容量;采用非溶剂致相分离法和自然干燥法制备了具有缓释抗菌功能的微米银颗粒用于长效抗菌。本文的主要研究内容及结论如下:

(1)采用固相法将金属元素W、Zr、Ce、Fe和Mo掺入单斜偏钛酸锂离子筛,研究了掺杂元素种类、掺杂方法以及掺杂量对吸附性能的影响。结果表明,掺杂5%钨的偏钛酸吸附性能最佳,Ti溶损率由未掺杂时的1.52%降低至0.77%,降低了49.3%;锂吸附容量达到48 mg g-1,优于未掺杂的H2TiO3(35 mg g-1),吸附容量提高了37.1%。掺杂钨元素在结构中形成了稳定骨架,不仅提高了吸附剂的稳定性,还通过减少Ti溶损率增强吸附剂的重复使用性能。与盐溶液浸渍法相比,采用混合研磨法掺杂钨元素时,Ti溶损率降低效果更显著(由0.98%降低至0.77%),混合研磨法掺杂钨元素提高了钨在吸附剂中的分散度,使得钨掺杂型偏钛酸锂吸附剂表面更均匀,有利于锂离子的有效吸附;吸附机理研究表明,W@H2TiO3对锂离子的吸附属于单层吸附,最大吸附容量为60.98 mg g-1;吸附行为符合拟二级动力学模型,属于化学吸附过程。

(2)采用固相法制备了尖晶石型钛酸锂离子筛,研究了原料种类、原料配比、煅烧时间、煅烧温度以及掺杂锆元素对产物的影响,并与单斜偏钛酸锂离子筛和锆掺杂型钛酸锂的锂吸附性能进行比较。结果表明,采用纳米级TiO2,温度介于850~1000 ℃有利于反应完全;相同吸附温度(30 ℃)下,尖晶石型钛酸的吸附容量为51 mg g-1优于单斜偏钛酸的35 mg g-1;前者的Li+和H+的交换率为78.6%,虽然低于后者的95.5%,但前者的钛溶损率为0.97%,低于后者的1.52%,表明尖晶石型钛酸锂离子筛在多次循环中的稳定性更高;尖晶石型钛酸锂经锆掺杂后,钛溶损率进一步降低至0.44%,降低了54.6%,表明锆元素在稳定吸附剂结构方面发挥了重要作用。吸附机理研究表明,尖晶石型钛酸锂离子筛对锂离子的吸附符合Langmuir模型,表明该吸附过程为单层吸附,最大吸附容量为61.12 mg g-1。

(3)采用非溶剂致相分离法和自然干燥法,制备了聚合物包覆的微米银粒子,探究了聚合物种类、相分离方法以及聚合物含量对银离子释放和抗菌效果的影响。结果表明,两种方法制备的聚合物膜均可以实现对银离子的控制释放作用,采用自然干燥法包覆的银粒子具有较低的聚集度、可控的释放速率以及操作简便的特点。与未经包覆的银粒子相比,经聚合物包覆的微米银的银离子释放浓度显著下降,从10.5 mg L-1降至0.033 mg L-1,此浓度高于必需的杀菌浓度,同时又满足国家标准规定的安全指标,表明聚合物包覆的微米银在安全性、有效性及分散性(尤其是在聚合物基质中)方面改善显著,展示了其在抗菌领域应用的巨大潜力。

外文摘要:

In response to the enrichment and separation of lithium ions from brine and the long-term antibacterial challenges of the process system, this study focuses on developing advanced adsorbent materials with high adsorption performance and cycle stability, as well as long-lasting antibacterial materials. This research is scientifically significant and holds important application value. Based on practical application requirements, we prepared a doped monoclinic lithium titanate ion sieve adsorbent with high adsorption capacity and cycle stability using the solid-phase method. Additionally, we prepared spinel-type lithium titanate ion sieves using the solid-phase method to enhance lithium ion adsorption capacity. Furthermore, we used the non-solvent induced phase separation method and natural drying method to prepare micron-sized silver particles with sustained-release antibacterial functions for long-term antibacterial applications. The main research content and conclusions of this study are as follows:

1. The metal elements W, Zr, Ce, Fe, and Mo were incorporated into monoclinic titanate lithium ion sieves using the solid-phase method. The study examined the effects of the type, method, and amount of doping on the adsorption performance. The results indicated that doping with W, Zr, and Ce effectively reduced the dissolution rate of Ti, with the best performance achieved by doping with 5% tungsten. The dissolution rate of Ti decreased from 1.52% (undoped) to 0.77%, a reduction of 49.3%. The lithium adsorption capacity reached 48 mg g⁻¹, an improvement of 37.1% compared to undoped H2TiO3 (35 mg g⁻¹). The incorporation of tungsten formed a stable framework within the structure, which not only enhanced the stability of the adsorbent but also improved its reusability by reducing the dissolution rate of Ti. Compared to the salt solution impregnation method, the mixed grinding method for tungsten doping resulted in a more significant reduction in the dissolution rate of Ti (from 0.98% to 0.77%). The mixed grinding method improved the dispersion of tungsten within the adsorbent, resulting in a more uniform surface that facilitated the effective adsorption of lithium ions. Adsorption mechanism studies showed that the adsorption of lithium ions by the monoclinic titanate lithium ion sieve followed the Langmuir isotherm model, indicating monolayer adsorption with a maximum adsorption capacity of 60.98 mg g⁻¹. Furthermore, the adsorption behavior conformed to a pseudo-second-order model, indicating a chemical adsorption process.

2. Spinel-type lithium titanate ion sieves were prepared using the solid-phase method. The effects of raw material mixing methods, raw material types, raw material ratios, calcination time, calcination temperature, and zirconium doping on the product were studied and compared with monoclinic lithium titanate ion sieves and zirconium-doped lithium titanate. The results showed that using nano-TiO₂ and calcining at temperatures between 850 and 1000 ℃ facilitated complete reactions. At the same adsorption temperature (30 ℃), the adsorption capacity of spinel-type lithium titanate was 51 mg g⁻¹, which was superior to the 35 mg g⁻¹ of monoclinic lithium titanate. The Li⁺ and H⁺ exchange rate in spinel-type lithium titanate was 78.6%, which, although lower than the 95.5% exchange rate in monoclinic lithium titanate, had a titanium dissolution rate of 0.97%, lower than the 1.52% dissolution rate in monoclinic lithium titanate, indicating higher stability during multiple adsorption and regeneration cycles. After zirconium doping, the titanium dissolution rate further decreased to 0.44%, a reduction of 54.6%, demonstrating that zirconium played an important role in stabilizing the adsorbent structure. Adsorption mechanism studies indicated that the adsorption of lithium ions by the spinel-type lithium titanate ion sieve followed the Langmuir isotherm model, indicating monolayer adsorption with a maximum adsorption capacity of 61.12 mg g⁻¹.

3.Non-solvent induced phase separation and natural drying methods were used to prepare polymer coated micron silver particles. The influences of polymers, phase separation methods and polymer solution volume on the delivery of silver ion and antimicrobial performance were studied. The results indicated that the polymer films prepared by both methods could achieve controlled release of silver ions. The silver particles coated by the natural drying method showed low aggregation degree, controlled release rate and simple operation procedure. Compared with uncoated silver particles, the released silver concentration of silver significantly reduced from 10.5 mg L-1(uncoated) to 0.033 mg L-1 (polymer-coated), which is lower than the standards criteria while higher than the sterilization concentration. The polymer coated micron silver significantly improves the safety, validity and dispersibility (especially in polymer matrix) of antimicrobial silver, exhibiting great potential in antimicrobial applications.

参考文献总数:

 171    

馆藏号:

 硕070301/24003    

开放日期:

 2025-06-26    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式