中文题名: | 基于注意力机制和高斯分布表示的遥感图像旋转框检测研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081203 |
学科专业: | |
学生类型: | 硕士 |
学位: | 工学硕士 |
学位类型: | |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 计算机视觉 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-06-22 |
答辩日期: | 2024-06-01 |
外文题名: | Remote Sensing Image Rotated Bounding Box Detection Based on Attention Mechanism and Gaussian Distribution Representation |
中文关键词: | |
外文关键词: | Remote sensing oriented box detection ; Attention mechanism ; Multi-scale feature fusion ; Gaussian distribution representation ; Bhattacharyya distance |
中文摘要: |
近年来,具有高空间分辨率的遥感图像获取更加便捷,借助深度学习技术对大规模遥感图像进行快速分析已成为共识。在各种遥感图像分析任务中,旋转框目标检测任务因在无人机航拍和交通监等领域的重要应用价值而受到关注。然而由于遥感目标尺度、朝向和纵横比的显著变化,将传统水平目标检测方法直接迁移到该任务往往有严重的性能瓶颈。虽然可通过引入旋转RoI等策略取得一定效果,但在复杂场景(如目标尺度差异较大、目标密集排列和小目标等)下,现有的方法仍存在明显不足。此外,大多数模型在旋转框检测的定位子任务上采用基于回归的损失函数,这不仅与IoU评价标准存在偏差,同时旋转框表示法的定义方式也会导致边界位置不连续问题,进而影响中心点精度和相同长宽比但不同缩放目标的适应性。本研究侧重于解决复杂场景下检测性能不足和中心点偏差较大问题,从模型结构和损失函数方面分别结合注意力机制和高斯分布表示来提升检测性能。主要的研究内容和成果如下: |
外文摘要: |
In recent years, acquiring remote sensing images with high spatial resolution has become more convenient, and it is now a consensus to utilize deep learning techniques to analyze large-scale remote sensing images rapidly. Among various tasks in remote sensing image analysis, the task of oriented bounding box detection has garnered attention due to its significant application value in drone aerial photography and traffic monitoring. However, due to the significant variations in scale, orientation, and aspect ratio of remote sensing targets, directly transferring traditional horizontal target detection methods to this task often encounters severe performance bottlenecks. While certain strategies such as introducing rotating RoI have demonstrated some effectiveness, existing methods still exhibit notable deficiencies in complex scenarios (such as significant differences in target scale, dense target arrangements, and small targets). Additionally, most models adopt regression-based loss functions for the localization subtask of this task, which not only deviates from the IoU evaluation standard but also leads to issues such as discontinuous boundary positions due to the definition of the rotating box representation, thereby affecting center point accuracy and adaptability to targets with the same aspect ratio but different scales. This study focuses on addressing deficiencies in detection performance under complex scenarios and significant deviations in center points. It does so by incorporating attention mechanisms and Gaussian distribution representation into both model structure and loss functions to enhance detection performance. The primary research content and achievements are listed below: |
参考文献总数: | 85 |
馆藏号: | 硕081203/24011 |
开放日期: | 2025-06-22 |