中文题名: | 攀枝花钒钛磁铁矿矿业活动固体废弃物重金属活动性研究(博士后研究工作报告) |
姓名: | |
学科代码: | 083001 |
学科专业: | |
学生类型: | 博士后 |
学位: | 文学博士 |
学位年度: | 2012 |
校区: | |
学院: | |
研究方向: | 环境地球化学 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
提交日期: | 2012-12-06 |
答辩日期: | 2012-03-25 |
外文题名: | 攀枝花钒钛磁铁矿矿业活动固体废弃物重金属活动性研究 |
中文摘要: |
金属矿山在开采、选冶等矿业活动过程中会产生大量的固体废弃物,这些固体废弃物往往直接堆放于地表,随时经受着表生作用的影响。硫化物型金属矿山产生的固体废弃物是大家关注的重点,但对于氧化物型金属矿山固体废弃物重金属的研究尚不多见。本研究报告在博士点基金和四川省科技支撑计划项目的支持下,选择我国著名的氧化物型金属矿山——攀枝花钒钛磁铁矿作为研究对象,采用ICP-MS、ICP-AES、原子吸收分光光度等分析方法,系统研究了矿业活动过程中废石、尾矿、废渣等固体废弃物中重金属在不同粒度(20-60目、60-120目、120-200目、200+目)、不同pH值(pH=1、3、5、7、8、10、12)下的地球化学特征。取得了主要的成果如下:1、废石中重金属的浸出特征废石中各重金属元素的含量在细粒样品中普遍高于粗粒样品,但在pH=12条件下Ti 、V、Co、Cr和pH=1条件下Ti、Cu的浸出量在粗粒样品中高于细粒样品。在pH=1的条件下各元素的浸出量均远高于其它pH条件下的浸出量,且除20-60目规格的样品,其它规格的样品都表现出浸出量Ni>Zn>Ti>Co>Cu>Cr>Cd>V。除pH=1外,其他pH条件下Ti的浸出量都相对其它元素较高。Cu、Ni、Ti、Co、Cd、V、Cr、Zn在废石中的浸出量在不同粒度条件下随pH的变化没有显著规律。废石各元素的浸出率变化幅度较大,除200+目规格样品中的V和60-120目规格样品中的V、Cr在pH=12时浸出率比其它pH的大外,在不同规格的样品中,各元素的浸出率在pH=1的条件下最大,Ti、V的浸出率均<1%。Zn在不同粒度、不同pH条件下浸出率相对其它元素要高,最高可达21.27%。 2、冶炼废渣重金属浸出特征及环境影响冶炼废渣样品中,Ni、Zn、Cd、Co元素在酸性溶液中浸出率较高;而Cu在强酸和强碱溶液中都有较高的浸出率;Cr在强酸溶液中浸出率最低,在强碱溶液中浸出率最大,在中性溶液中也具有较高的浸出率;V、Ti在强酸溶液中浸出率最低,在强碱溶液中浸出率最大。当pH为1时Ni、Zn在粒度为20-60目具有最大的浸出率;Cu、Co在粒度20-60目和200+目时均具有较大的浸出率;Ti、Cr、V在粒度为120-200目时有最大的浸出率;Cd在粒度200+目时具有最大的浸出率。当3<pH<12时除Cr外所有元素在各个粒度样品中浸出率都很小且无明显变化,而Cr浸出率随着粒度增大而增加。距离废渣越近的土壤中重金属的含量越高,Cu、Zn、Co、V、Mn、Ti随着距离废渣越远,其土壤中含量越低。土壤剖面中大部分元素在表层含量明显高于下部。水系沉积物中Cu、Ni、Cr在洗渣处沉积物中的含量远高于其它位置,Zn在洗渣处的含量远低于其它地方的含量,Co从上游到下游含量程弱上升趋势。V、Mn、Ti在下游的含量都很高。植物中Mn、Ti的含量较高。用地质累积指数法评价结果表明,土壤和水系沉积物中Ti、V、Cd、Cr的污染程度较大,Cu、Zn、Ni、Mn的污染程度相对较小。3、尾矿重金属浸出特征在四种粒度尾矿样品中,除As外,其他所有元素在pH值为1时的浸出量和浸出率最大,远高于其他pH,As则在pH为1和pH为12时的浸出量和浸出率最高,且基本一致。pH=1时Zn、Ni、Cd、Co、Cu的浸出率较大,其他pH条件下Cd、Zn、Cr、Ni、Co的浸出率较大。不同粒度样品重金属浸出率略有不同,20-60目样品在pH为1时的浸出率为Zn>Ni>Cd>Co>Cu>V>Cr>>Ti,在其他pH条件下,各元素的浸出率分别为Cd>Zn>Cr>Ni>Cu>Co>V>>Ti。Cu、V、Ti三种元素除pH为1外,在pH值为12时的浸出率较其他5种pH条件的浸出率要大。60-120目样品在pH为1时的浸出率为Ni>Co>Zn>Cu>Cd>V>Cr>>Ti,在其他pH条件下,各元素的浸出率总体上为Cd>Zn>Cr>Ni>Co>Cu>V>>Ti。120-200目样品在pH为1时的浸出率为Ni>Co>Zn>Cu>Cd>V> Cr>>Ti,在其他pH条件下,各元素的浸出率分别为Zn>Cd>Cr>Ni>Co>Cu>V>>Ti。200+目样品在pH为1时的浸出率为Ni> Co>Zn>Cd>Cu>Cr>V>>Ti,在其他pH条件下,各元素的浸出率分别为Cr>Cd> Zn>Ni>Co>Cu>V>>Ti。4、三种固体废弃物重金属浸出特征对比结果对废石、尾矿、废渣三种矿业活动固体废弃物在不同pH值、不同粒度下的浸出量和浸出率进行了对比,结果如下:(1)pH=1时,三种固体废弃物中浸出量基本呈“废石>尾矿>废渣”的关系,V、As、Cd、Pb、Cr的浸出量相对较低,Ti、Ni、Zn则相对较高;在废石和尾矿中,浸出量随着粒度的减小而减小,但20-200目的废渣中,除Zn以外的重金属浸出量随着粒度的减小而增大,200+目的废渣中重金属的浸出量则较低。pH=1时,V、Ti、Cu、Cr的浸出率都相对较低,而Ni、Zn则相对较高。(2)pH=3时,As、Cd、Pb、Cu、Co的浸出量相对较低,Ti、V、Ni、Zn相对较高;浸出量整体呈废石>废渣>尾矿的趋势。pH=3时,浸出率最大的是粒度为200+的废石,其他重金属的浸出率都相对较低,浸出率最大值为200+废石中的Zn;除了粒度为200+的废石,浸出率整体呈废渣>废石>尾矿的趋势。(3)pH=5时,As、Cd、Pb、Cu、Co的浸出量相对较低,Ti、V、Zn中浸出量相对较高;尾矿中的浸出量最低。三种样品中各种重金属的浸出率均比较低;浸出率整体呈废渣>废石 >尾矿的趋势,Cr、Cd的浸出率相对较高。(4)pH=7时, As、Cd、Pb、Cu、Co的浸出量均比较小;除重金属V为废渣>废石>尾矿外,其他元素浸出量整体呈废石>废渣>尾矿的趋势。三种样品中重金属的浸出率均比较低,最大值为120-200目废渣中的Cr;浸出率整体呈废渣>废石>尾矿的趋势。(5)pH=8时, As、Cd、Pb、Cr、Co浸出量均比较小;在Ti、Ni、Cd、Zn浸出量呈废石>废渣>尾矿的趋势,而在V、Cu、Cr、Co中则是废渣> 废石>尾矿。三种样品在Cu、Ti、V、Co中浸出率均比较低;浸出率大致呈废渣>废石>尾矿的趋势。(6)pH=10时, As、Cd、Pb、Cu、Co浸出量均比较小;Ti、Ni浸出量呈废石>废渣>尾矿的趋势,而在V、Cu、Cr、Cd中则是废渣> 废石>尾矿。三种样品中重金属的浸出率均比较低;除Cd外,浸出率大致呈废渣>废石>尾矿的趋势。(7)pH=12时,Ni、 As、Cd、Pb、Cu、Co浸出量均比较小;Ti、Ni浸出量呈废石>废渣>尾矿的趋势,而在V、Cu、Cr、Cd中则是废渣> 废石>尾矿。三种样品重金属的浸出率均比较低,浸出率最大值为120-200目废渣中的Cr;除Cr外,总体上三种固体废弃物中浸出率随粒度变小呈平缓上升趋势。5、固体废弃物重金属形态特征Cu、Zn、Ni、Co在固体废弃物中以残余态形式为主。同一固体废弃物中的Zn、Ni、Co具有相似的形态特征,Cu与Zn、Ni、Co的化学形态分布特征不同;不同粒度废渣中的Ni、Co具有相似的形态分布特征,Cu、Zn形态特征则不相同。 Cu、Zn、Ni、Co在废石和尾矿中的形态特征具有相似性,但与废渣中的形态特征不同。废石和尾矿中的Zn、Ni、Co的各形态大小关系总体为残余态>有机结合态>铁锰氧化物结合态>碳酸盐结合态>可交换态,然而废石和尾矿中Cu的各形态大小关系为残余态>有机结合态>>碳酸盐结合态>铁锰氧化物结合态>可交换态。废渣(200目)中Ni、Co的各形态大小关系总体为残余态>>铁锰氧化物结合态>有机结合态>>碳酸盐结合态和可交换态,Zn各形态大小关系为残余态>>铁锰氧化物结合态>可交换态>有机结合态>碳酸盐结合态,而Cu的各形态大小关系为残余态>有机结合态>铁锰氧化物结合态>>碳酸盐结合态和可交换态。废渣(120-200目)中Ni、Co的各形态大小关系总体为残余态>有机结合态>铁锰氧化物结合态>碳酸盐结合态和可交换态,Zn各形态大小关系为残余态>>铁锰氧化物结合态>可交换态>有机结合态>碳酸盐结合态,而Cu的各形态大小关系为残余态>>其余形态。
﹀
|
外文摘要: |
Enormous amounts of solid wastes will be produced in the process of mining, smelting and other mining activities of the metal mine. These solid wastes are often stacked directly on the earth's surface, enduring the impact of the hypergenesis at any time. Sulphide mines have always been the concerns of people, whereas heavy metals in solid wastes of oxide mines are paid less attention to and not studied much. Under the support of the two projects, The Doctoral Foundation and The Science & Technology Support Project of Sichuan Province, the author chooses Panzhihua V-Ti-Magnetite, a famous oxide mine in China, as the subject of research. In this thesis, the geochemical characteristics of heavy metals in various solid wastes (such as mullock, tailings, waste residue, etc) produced in the process of mining are systematically studied in different granularity (20-60 mesh, 60-120 mesh, 120-200 mesh, 200+ mesh) and with different pH value (pH = 1, 3, 5, 7, 8, 10, 12) by employing the analyzing methods of ICP-MS ICP-AES and AAS. The research results are summarized as follows : 1 Leaching characteristics of heavy metal in mullockThe content of the heavy metal elements in the fine-grained mullock samples are generally higher than that in the coarse-grained samples. However, for Ti, V, Co, Cr when pH = 12 and Ti, Cu when pH=1, the leachable quantity in coarse-grained samples are of higher than that in the fine-grained samples. The leachable quantity of each element when pH = 1 is much higher than that in other pH conditions, and in addition to the samples of 20-60 mesh specifications, leachable quantity order of other samples is Ni>Zn>Ti>Co>Cu>Cr>Cd>V. The leachable quantity of Ti is relatively higher than that of other elements except when pH=1. The leachable quantity of Cu, Ni, Ti, Co, Cd, V, Cr and Zn in different particle size has no obvious law with the variation of pH values.The leachable quantity of each element in mullock shows a wide range. For samples in different specifications, leaching rate of each element is the highest when pH=1 and that of Ti and V are both lower than 1%, except that of V in 200+ mesh size samples and that of V and Cr in 60-120 mesh size samples in pH=12 are higher than in other pH values. The leachable quality of Zn is higher than that of other elements in all particle sizes and pH values, with the highest value of 21.27%.2 Leaching characteristics and environmental impact of heavy metals from smelting slagIn the samples from smelting slag, the leaching rate of Ni, Zn, Cd and Co in acid solution is a bit higher than that in the other varieties; Cu has a high leaching rate in both acid and alkali solution; Cr, V and Ti has the lowest rate in acid solution and a highest leaching rate in alkali solution; Cr also has a high rate in the neutral solution. When pH = 1, elements Ni, Zn in grain size of 20 to 60 mesh shows a maximum leaching rate; Cu and Co in 20 to 60 mesh and 200+ mesh are with a high leaching rate; Ti, Cr and V in 120-200 mesh and Cd in 200+ mesh are with the highest leaching rate. When 3 < pH < 12, the leaching rate of all elements in any grain size sample are very small and have no notable variation, except that the leaching rate of Cr increases as the grain size rises.The closer to the slag, the higher contents of heavy metals in soil are, and farther away from the slag, contents of Cu, Zn, Co, V, Mn and Ti in soil get obviously lower. For most of the elements, their contents in the profile are obviously higher than those in the lower surface. In the stream sediments samples, the contents of Cu, Ni and Cr in the slag-washing area are much higher than those in other positions, but Zn is exceptional; the content of Co shows a weakly upward trend from upstream to downstream. The contents of V, Mn and Ti are very high in the downstream. Mn and Ti have a higher content in plants. The evaluation results by Geo-accumulation Index (Igeo) method show that the pollution of Ti, V, Cd, Cr in soil and stream sediments is serious, while the pollution degree of Cu, Ni, Mn, Zn is relatively small.3 Leaching characteristics of heavy metals from tailings In the samples of four kinds grain size from tailings, the leaching rate and quantity of all elements are the highest when pH = 1, which are far higher than that in other pH; for As, its leaching rate and quantity are the two highest ones when pH = 1 and pH=12. The leaching rates of Zn, Ni, Cd, Co and Cu are relatively higher when PH = 1. In other pH conditions, the leaching rates of Cd, Zn, Cr, Ni and Co are relatively higher. The leaching rates of heavy metals for different grain size are slightly different and the order of their leaching rates in 20 to 60 mesh when pH=1 are as follows: Zn>Ni>Cd>Co>Cu>V>Cr>>Ti, while in other pH conditions, Cd>Zn>Cr>Ni>Cu>Co >V>>Ti. The leachings rates of Cu, V and Ti when pH = 12 are larger than those in the other 5 pH conditions, no including pH=1. When pH=1, the leaching rates of heavy metals in 60-120 mesh samples are: Ni>Co>Zn>Cu>Cd>V>Cr>>Ti, while in other pH conditions, the leaching rates are generally Cd>Zn>Cr>Ni>Co>Cu>V>>Ti. When pH=1, the leaching rates of heavy metals in 120-200 mesh samples are: Ni>Co>Zn>Cu>Cd>V>Cr>>Ti, while in other pH conditions, Zn>Cd>Cr>Ni>Co>Cu>V>>Ti. When pH=1, the leaching rates of heavy metals in 200+ mesh samples are: Ni> Co>Zn>Cd>Cu>Cr>V>>Ti, while in other pH conditions, Cr>Cd>Zn>Ni> Co>Cu>V>>Ti.4 Contrast results of leaching characteristics of heavy metals from three kinds of solid wastes Contrast research is conducted on the leaching rate and quantity in different granularity and different pH value, between three kinds of solid wastes (mullock, tailings and waste residue) produced by mining activity. The results are as follows:(1) When pH=1, the leaching quantity order of the three solid wastes is basically "mullock>tailings > waste residue ". The leaching quantities of V, As, Cd, Pb and Cr are relatively low, while those of Ti, Ni and Zn are relatively high. In mullock and tailings, the leaching quantity decrease as the grain size decreases. But in the waste residue of 20-200 mesh, except Zn, the leaching quantity of the other heavy metals increase as the grain size decreases. The leaching rates of heavy metals in 200+ mesh samples in the waste residue are relatively low. When pH = 1, the leaching rates of V, Ti, Cu and Cr are relatively low, except Ni and Zn.(2) When pH=3, the leaching quantities of As, Cd, Pb, Cu and Co are relatively low, while those of Ti, V, Ni and Zn are relatively high; the leaching quantity trend of the three solid wastes is generally " mullock> waste residue>tailings". When pH = 3, the leaching rates of heavy metals in 200+ mesh samples are the largest, that of Zn in 200+ mesh is the maximum, and that of the other heavy metals is relatively low. Except the mullock in 200+ mesh, the leaching rate trend is generally "waste residue> mullock >tailings ". (3) When pH=5, the leaching quantities of As, Cd, Pb, Cu and Co are relatively low, while those of Ti, V and Zn are relatively high; the leaching rate of the tailings samples is the lowest. The leaching rates of heavy metals in all the three solid waste samples are relatively low while the leaching rates of Cr and Cd are relatively high, with such a general trend as "waste residue>mullock>tailings",. (4) When pH=7, the leaching quantities of As, Cd, Pb, Cu and Co are relatively low. Except that the leaching quantity trend of V is "waste residue>mullock>tailings", the leaching quantity trend of all the other elements is generally "mullock>waste residue>tailings". The leaching rates of all the three solid waste samples are relatively low, that of Cr in 120-200 mesh waste residue is the maximum, and the general trend is "waste residue>mullock>tailings". (5) When pH=8, the leaching quantities of As, Cd, Pb, Cr and Co are relatively low. The leaching quantity trend of Ti, Ni, Cd and Zn in the three wastes is "mullock>waste residue>tailings ", while that of V, Cu, Cr and Co is "waste residue>mullock>tailings". The leaching rates of Cu, Ti, V and Co in all the three solid waste samples are relatively low, with such a trend as "waste residue > mullock >tailings". (6) When pH=10, the leaching quantities of As, Cd, Pb, Cu and Co are relatively low. The leaching quantity trend of Ti and Ni in the three wastes is "mullock>waste residue> tailings", while that of V, Cu, Cr and Cd is "waste residue> mullock>tailings". The leaching rates of heavy metals in all the three solid waste samples are relatively low, with such a trend as "waste residue > mullock >tailings", except Cd. (7) When pH=12, the leaching quantities of Ni, As, Cd, Pb, Cu and Co are relatively low. The leaching quantity trend of Ti and Ni in the three wastes is "mullock>waste residue>tailings", while that of V, Cu, Cr and Cd is "waste residue>mullock>tailings". The leaching rates of heavy metals in all the three solid waste samples are relatively low, and the maximum is that of Cr in 120-200 mesh waste residue. Except Cr, the leaching quantity of the other heavy metals in all the three solid waste samples increase gently as the grain size decreases.5 Fraction features of heavy metals in solid wastes The fractions of Cu, Zn, Ni and Co in solid wastes are mainly featured by the residua. The fractions of Zn, Ni and Co are similar in the same solid waste, while that of Cu is different to them. The fractions of Ni and Co are similar in waste residue of different granularity, while those of Cu and Zn are different to them. The fractions of Cu, Zn, Ni, Co are similar in mullock and tailings, which vary greatly with that in waste residue.The order for the fractions of Zn, Ni and Co in mullock and tailings is as follows: "residua >bound organic>Fe-Mn oxides> carbonates>exchangeable", while that of Cu is "residual>bound organic >> carbonates> Fe-Mn oxides>exchangeable". The order for the fractions of Ni and Co in waste residue (200 mesh) is as follows: "residua >> Fe-Mn oxides>organic matter> carbonates and exchangeable", while that of Zn is "residua>>Fe-Mn oxides>exchangeable>bound organic > carbonates" and that of Cu is "residua >bound organic > Fe-Mn oxides>> carbonates and exchangeable". The order for the fractions of Ni and Co in waste residue (120-200 mesh) is as follows: "residua >bound organic > Fe-Mn oxides> carbonates and exchangeable", while that of Zn is "residua >> Fe-Mn oxides>exchangeable>bound organic> carbonates" and Cu is "residua >>the other fractions".
﹀
|
参考文献总数: | 43 |
作者简介: | 徐争启,男,1975年5月出生,甘肃正宁人,理学博士,成都理工大学副教授,从事地球化学教学和研究工作。1997年7月毕业于成都理工学院地质矿产勘查专业,获工学学士学位。2005年6月毕业于成都理工大学地球化学专业,获理学硕士学位。2009年6月毕业于成都理工大学地球化学专业,获理学博士学位。1997年7月-2002年8月在甘肃有色地勘局第三地质队从事地质调查工作,2005年7月起在成都理工大学从事教学和科研工作。2008年破格晋升为副教授。2009年11月底进入北京师范大学水科学研究院环境科学与工程博士后 |
馆藏地: | 图书馆学位论文阅览区(主馆南区三层BC区) |
馆藏号: | 博083001/1228 |
开放日期: | 2012-12-06 |