- 无标题文档
查看论文信息

中文题名:

 镍钴离子注入修饰电极在燃料电池与超级电容器中的应用    

姓名:

 郭美松    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 070302    

学科专业:

 分析化学    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2018    

校区:

 北京校区培养    

学院:

 化学学院    

研究方向:

 修饰电极在燃料电池的应用    

第一导师姓名:

 胡劲波    

第一导师单位:

 北京师范大学化学学院    

提交日期:

 2018-06-27    

答辩日期:

 2018-06-27    

外文题名:

 Application of nickel and cobalt ion implantation-modified electrode in fuel cells and supercapacitors    

中文关键词:

 纳米粒子 ; 燃料电池 ; 超级电容器 ; 离子注入    

中文摘要:
本论文采用离子注入技术将镍、钴单金属及双金属纳米粒子修饰到ITO与泡沫镍基底的表面,制备了几种金属纳米粒子修饰的电极材料,并将其应用到燃料电池与超级电容器当中。通过扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)等手段对电极材料的结构、形貌与化学组成进行表征。再通过各种电化学方法,如循环伏安法(CV)、电化学交流阻抗法(EIS)、恒电位法研究了电极材料的电化学活性与性能。主要的工作如下: 第一章 前言 本章主要介绍了燃料电池的起源与分类,当前燃料电池催化剂的研究进展,简述了本论文的研究内容和意义。 第二章 镍纳米粒子修饰的ITO电极(NiNPs/ITO)的制备及其对甲醇电催化氧化的研究 利用离子注入技术将镍纳米粒子修饰到氧化铟锡玻璃(ITO)电极的表面。采用扫描电子显微镜对其结构进行表征,可以观察到镍纳米粒子的尺寸约为50-125nm。通过电化学交流阻抗、循环伏安法、恒电位法对NiNPs/ITO电极的电催化活性以及稳定性进行探究。结果证明NiNPs/ITO电极在碱性溶液中对甲醇的氧化具有良好的电催化效果。表明该电极可应用于直接甲醇燃料电池。 第三章 钴纳米粒子修饰的泡沫镍电极(CoNPs/NF)的制备及其对甲醇电催化氧化的研究 利用离子注入技术将钴纳米粒子修饰到泡沫镍电极的表面。采用扫描电子显微镜、X射线衍射、X射线光电子能谱与X射线能量光谱对CoNPs/NF的形貌、结构与组成进行表征。通过循环伏安法探究了该电极电催化氧化甲醇的反应机理,同时比较了不同形貌的钴纳米材料对电催化活性的影响。CoNPs/NF电极良好的电催化活性与稳定性得益于具有三维多孔结构的泡沫镍基底,不仅增大了电极的表面积,还提供了更多的反应位点。 第四章 镍、钴双金属纳米粒子修饰的泡沫镍电极(Ni-Co/NF)的制备及其对硼氢化钠电催化氧化的研究 通过两次离子注入制备了镍钴双金属纳米粒子修饰的泡沫镍电极。与单金属纳米粒子修饰的电极相比,镍钴双金属纳米粒子修饰的电极对硼氢化钠的氧化显示出了更好的电催化效果。Ni-Co/NF电极优秀的电催化活性与稳定性归功于泡沫镍基底独特的三维多孔结构与镍钴双金属间的协同作用,实验结果证明了镍钴双金属修饰电极在燃料电池中具有应用价值。 第五章 镍纳米粒子修饰的泡沫镍电极(NiNP/NF)的制备及其在超级电容器中的应用 采用离子注入技术将镍纳米粒子修饰到泡沫镍电极的表面,并首次将其应用到超级电容器中。与纳米纤维状的NiO/NF电极相比,NiNP/NF电极具有更高的比容值(3862 F/g,电流密度为5 A/g), 并且在连续充放电1000次后,比容值还能保持在原来的72.7%。NiNP/NF电极制备简单、比电容高的优势使其成为具有潜力的超级电容器材料。
外文摘要:
In this thesis, Nickel or cobalt nanoparticles were modified on the surface of ITO and Ni foam substrates by ion implantation and we applied them to fuel cells and supercapacitors. The structure, morphology and chemical composition were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical activity and performance were investigated by electrochemical methods, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry. The main work is as follows: Chapter 1 In this chapter, we mainly introduce the origin and classification of fuel cells. Then the research progress in the catalysts of fuel cells is described briefly. The research content and significance of this research are also outlined. Chapter 2 Fabrication of nickel nanoparticles modified ITO electrodes and the application for electrocatalytic oxidation of methanol Nickel nanoparticles (NiNPs) are directly synthesized on an indium tin oxide electrode by ion implantation. The morphology of the obtained electrode is characterized by scanning electron microscopy (SEM). The size of the nickel nanoparticles (NiNPs) is in the range of 50~125 nm based on SEM measurements. The electrocatalytic activity and stability are measured by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and chronoamperometry. The results confirm that the NiNPs/ITO electrode has substantial electrocatalytic activity and stability towards the oxidation of methanol in alkaline medium, indicating possible applications in direct methanol fuel cells. Chapter 3 Fabrication of cobalt nanoparticles modified Ni foam electrodes and the application for electrocatalytic oxidation of methanol In this chapter, cobalt-nanoparticles (CoNPs) are directly synthesized on Ni foam by ion implantation. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS) have been employed to characterize the physicochemical properties of the as-prepared electrode. The reaction mechanism and the influence of different nano-stucture are investigated by cyclic voltammetry (CV). The CoNPs/NF electrode shows prominent electro-catalytic activity and stability toward the electro-oxidation of methanol because of the well preserved 3D mesoporous structure of Ni foam, which can increase the electrode/electrolyte contact interface and active sites for reaction. Chapter 4 Fabrication of bimetallic Ni-Co nanoparticles modified Ni foam electrodes and the application for electrocatalytic oxidation of borohydride Ni and Co nanoparticles are directly immobilized on a three-dimensional Ni foam substrate (Ni-Co/NF) by two-step ion implantation. The performance of the Ni-Co/NF electrode in the electrochemical oxidation of NaBH4 is better than Ni/NF or Co/NF electrodes. The Ni-Co/NF electrode exhibited excellent electrocatalytic activity and good stability during electrochemical reactions. These properties are attributed to the 3D porous structure of the Ni foam and the synergistic effect of Ni and Co nanoparticles. The enhanced electrocatalytic performance suggests that the Ni-Co/NF is promising for fuel cell applications. Chapter 5 Fabrication of Ni nanoparticles modified Ni foam electrodes and the application for supercapacitors Ni nanoparticles (NiNP/NF) are successfully synthesized on Ni foam by a facile ion implantation method and firstly studied for supercapacitor application. The NiNP/NF electrode delivers a better performance than NiO/NF. The NiNP/NF electrode shows a high specific capacitance of 3862 F g-1 at 5 A g-1 and good long-term endurance at a current density of 50 A g-1 after 1000 cycles charge-discharge test. The excellent performance and facile fabrication make the NiNP/NF electrode a promising candidate for high-performance supercapacitors.
参考文献总数:

 172    

馆藏号:

 硕070302/18002    

开放日期:

 2019-07-09    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式