中文题名: | 一维拓扑绝缘体的纠缠特性 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070201 |
学科专业: | |
学生类型: | 学士 |
学位: | 理学学士 |
学位年度: | 2023 |
校区: | |
学院: | |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2023-05-23 |
答辩日期: | 2023-05-08 |
外文题名: | The Entanglement Properties of 1D Topological Insulator |
中文关键词: | |
外文关键词: | SSH model ; topological insulator ; non-Hermitian ; entanglement entropy ; winding number |
中文摘要: |
本文利用 SSH 模型讨论了一维拓扑绝缘体在左基元和右基元上的纠缠特 |
外文摘要: |
This paper discusses the entanglement properties of onedimensional topological insulators in left and right primitives using the SSH model. First, we show that the entanglement entropy of onedimensional chiral symmetric topological insulator in the Hermitian case has a lower bound of 2ln2|I| using the method introduced in the paper[1], where I is the Winding number. We verify this conclusion numerically. We focus on the entanglement entropy of nonHermitian model. Through numerical calculations, we find that it also has a lower bound. |
参考文献总数: | 9 |
优秀论文: | |
插图总数: | 7 |
馆藏号: | 本070201/23021 |
开放日期: | 2024-06-11 |