- 无标题文档
查看论文信息

中文题名:

 利用超快诊断对日地空间等离子体模拟和双锥对撞点火的研究    

姓名:

 刘正东    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070401    

学科专业:

 天体物理    

学生类型:

 博士    

学位:

 理学博士    

学位类型:

 学术学位    

学位年度:

 2024    

校区:

 北京校区培养    

学院:

 天文系    

研究方向:

 实验室天体物理    

第一导师姓名:

 仲佳勇    

第一导师单位:

 天文系    

提交日期:

 2024-06-16    

答辩日期:

 2024-05-23    

外文题名:

 Research of solar-Earth space plasma simulation and double-cone ignition using ultrafast diagnoses    

中文关键词:

 激光等离子体 ; 超快诊断 ; 实验室天体物理 ; 弓形激波 ; 双锥对撞点火    

外文关键词:

 Laser plasma; Ultrafast diagnosis; Laboratory astrophysics; Bow shock; Double cone ignition    

中文摘要:

随着激光技术的飞速发展,激光等离子体应用研究已成为科研领域的热点之一。时间分辨在纳秒(10−9 秒)量级甚至皮秒(10−12 秒)量级的超快诊断则是激光等离子体应用研究中举足轻重的研究技术。该技术不仅服务于科学前沿的探索,例如在实验室天体物理研究中获得重要数据,可以应用到设计天体物理实验中;同时也服务于国家重大需求的研究,聚焦于惯性约束激光聚变,加深对核聚变重要物理过程的理解。鉴于实验室天体物理和惯性约束激光聚变中等离子体演化过程的时间尺度通常在纳秒甚至几百皮秒范围内,为了深入研究等离子体的内在物理机制,利用超快诊断技术对等离子体物理参数进行精确测量,并不断提升超快诊断的诊断能力,显得尤为重要且不可或缺。
太阳风与地球磁层相互作用的实验室模拟是实验室天体物理中主流的研究方向。我们创新性地利用激光烧蚀螺线管产生特斯拉量级的偶极磁场模拟地球磁场,通过激光烧蚀碳氢薄膜模拟太阳风等离子体,成功进行了地球弓形激波的模拟实验。借助光学成像和B-dot 等超快诊断设备精确测量并分析了实验中的等离子体和磁场。实验观察到磁场阻碍下等离子体堆积形成的弓形激波结构,并深入分析了 CH 等离子体动压和磁场磁压对激波的张角、位置和位型的影响。通过标度变换验证了该模拟实验的有效性和可靠性,并且通过磁流体模拟对实验结果进行了验证。
由于螺线管磁场的时变特性导致对其进行准确分析十分困难,所以我们又研究了低磁场强度的永磁铁磁场对激波的影响,通过超快光学、磁场及 X 射线诊断技术,全面分析了磁场作用下等离子体形成激波的过程,并对比了磁性与非磁性障碍物对激波形成的影响,探讨了等离子体和磁场位型的演化。
我们利用双电容线圈靶对地球磁层的极尖区磁重联和磁层顶弓形激波进行了研究,利用光学成像观察到了清晰的弓形激波和由于磁重联导致的等离子体汇聚到极尖区磁零点的现象,验证了天文中的 Dungey 模型,发现磁零点的间距和弓形激波的张角会随着线圈间距的增大而增大。实验中还在线圈附近观察到了开尔文亥姆霍兹不稳定性,这可能与磁层顶边界的等离子体动力学有关。
双锥对撞点火(DCI)作为一种新兴聚变方案,旨在通过较低的激光能量实现高效的能量转换。本文中我们利用采用 X 射线条纹相机等超快诊断设备深入分析了 DCI 实验中等离子体的动力学演化过程。实验中发现在 10kJ 纳秒激光驱动下可以形成内爆速度稳定在 220km/s 左右的高速内爆等离子体喷流,经过纳秒激光压缩与加速后的高密等离子体喷流能够在金锥口精确对撞,形成边缘密度陡峭的等容等离子体。碰撞后等离子体自发光强度显著增强,表明密度和温度均有大幅提升。对比不同烧蚀材料产生的锥口等离子体动力学过程,发现虽然在滑行时间和其他参数方面存在微小差异,但整体上来说不同材料的等离子体的内爆动力学行为是非常相似的。该研究结果对 DCI 方案后续的快电子注入加热过程至关重要。
我们用超快的 X 射线条纹相机测量并分析了 DCI 实验中不同波形对锥口等离子体动力学的影响。实验结果证实了在主脉冲前引入预脉冲能够减小在冲击波压缩过程中对球壳的预热,主脉冲改为斜角脉冲能够增大烧蚀深度和增大电子热传导区的长度,降低对压缩激光的要求,因此优化后的激光波形在相同激光能量下显著提升了从金锥口喷出的等离子体速度,并在碰撞后实现了等离子体温度和密度的显著增加。该研究为 DCI 聚变方案的波形优化提供了重要参考。
我们用八针孔阵列与 X 射线条纹相机结合组成超快二维 X 射线成像系统(MIXS)对DCI 实验中的对撞等离子体进行了探测,得到了时间分辨为 80ps,空间分辨为 42μm 的对撞等离子体超快二维 X 射线演化过程,观察到由于激光能量和辐照的不均匀性导致的等离子体对撞过程的不均匀。但是由于 X 射线条纹相机狭缝较短和时间挡位长的限制以及瞄准方案不稳定的原因导致该 MIXS 系统的时间和空间分辨能力并不好,瞄准也出现一定的偏差,最重要的是由于没有时间基准无法确定激光开始和结束的准确时刻。
基于上述 MIXS 系统的缺点,我们在其基础上进行了升级优化,通过更换更长的狭缝和引入更快的时间挡位来提升系统的空间和时间分辨能力。同时,引入时间基准脉冲,不仅修正了 X 射线条纹相机扫描的非线性,还精确确定了激光脉冲的到达时刻,首次在国内利用时间基准脉冲进行时间校准后完成 MIXS 系统的验证。此外,对瞄准方法和针孔阵列进行了优化,设计了一套操作简便、稳定性高的瞄准系统。经过上述改进,本研究成功开发出具有 38ps 时间分辨和 18µm 空间分辨的具有时间基准脉冲的超快二维 X 射线成像系统(MIXS-F),为激光聚变内爆过程等复杂物理现象的观察提供了一种重要且精确的诊断工具。
综上所述,本文详细地介绍了超快诊断在实验室天体物理和双锥对撞点火领域中的应用研究,包括物理理论的分析以及超快诊断的开发优化。利用数值模拟程序对实验结果进行了验证。该工作不仅为超快诊断在激光等离子体领域的应用提供了更多的参考, 有助于推进超快诊断技术的发展,完善了我们对双锥对撞点火内爆阶段所涉及的物理过程的理解。此外,该工作也为太阳风与地球磁层相互作用等天文研究提供了宝贵的实验验证和理论参考,有助于推动相关领域研究的深入发展。

外文摘要:

With the development of laser technology, laser plasma research has become a hot spot in recent years, and ultrafast diagnostics with time resolution on the order of nanoseconds or even picoseconds is a pivotal research technique in laser plasma research. On the one hand, the technique serves scientific frontier issues, such as obtaining important data in laboratory astrophysics research, which can be applied to design astrophysics experiments. On the other hand, the technique is oriented to the major national needs, focusing on inertial confinement laser fusion to deepen the understanding of important physical processes in fusion physics. Laboratory astrophysics and inertial confinement laser fusion plasma evolution is on the order of nanoseconds or even picoseconds, and the use of ultrafast diagnostics to probe the physical parameters of the plasma is indispensable for in-depth study of plasma endowment physics.
The laboratory simulation of the interaction between the solar wind and the Earth's magnetosphere is a very mainstream research direction in laboratory astrophysics. We have successfully simulated Earth's bow shock wave by using laser ablation of a solenoid to generate a dipole magnetic field on the scale of Tesla, and by laser ablation of a hydrogen film to simulate solar wind plasma. Ultrafast diagnostic equipment such as optical imaging and B-dot were used to accurately measure and analyze the plasma and magnetic field in the experiment. Our observations reveal that plasma accumulates continuously, forming structures akin to bow shock and magnetopause due to magnetic field obstructions. We delve into the influence of dynamic pressure and magnetic pressure on the tension angle, position, and configuration of shock waves. Furthermore, we conduct the scaling transformation of experimental parameters to validate and enhance the reliability of our simulation experiments. These experimental results are corroborated using MHD simulation programs.
Due to the time-varying nature of solenoid magnetic fields, accurately analyzing their characteristics poses significant challenges. Consequently, we researched the effect of the permanent magnet with low intensity on the shock wave. By using ultrafast optics, magnetic field and X-ray diagnostic techniques, the process of plasma shock wave formation under magnetic field is analyzed comprehensively. The influence of magnetic and non-magnetic obstacles on shock wave formation is compared, and the evolution of plasma and magnetic field configuration is discussed.
We devised a special experiment to explore the magnetic reconnection at the polar tip of the Earth magnetosphere and the bow shock by using a double capacitor coil target. Through optical imaging techniques, we observed a distinct bow shock formation and the convergence of plasma towards the magnetic null point at the polar cusp, thereby validating the astronomical Dungey model. Our analysis revealed that as the distance between the coils increases, the separation between the magnetic nulls and the angle of the bow shock also exhibit an upward trend. Moreover, we detected Kelvin-Helmholtz instability near the coil, indicating a potential connection to plasma dynamics at the magnetopause boundary. 
Double Cone Ignition (DCI) represents a novel fusion scheme that has gained prominence in recent years due to its ability to achieve higher energy conversion efficiency with lower laser energy input. In this study, we employ an X-ray streak camera to scrutinize the plasma dynamics in DCI fusion experiments. The results show that a high density plasma with uniform density distribution can be formed at the stagnation time after accurate collision between the high density plasma jet after compression and acceleration in DCI experiment. A high speed implosive plasma jet with a velocity of about 220km/s can be formed by a nanosecond laser with a total energy of 10kJ. Following collision, there was a notable increase in X-ray self-emission from the plasma, indicating a significant rise in plasma density and temperature during the collision phase. We compare the dynamics processes of plasma produced by different ablation materials and find that although there are minor differences in coasting time and other parameters, overall the implosion dynamics processes of plasma from different materials is very similar. The research is crucial for the subsequent fast high-energy electron beam heating process of the DCI.
Utilizing an ultrafast X-ray streak camera, we investigated the impact of various laser waveforms on plasma dynamics in DCI experiments. The experimental results show that the introduction of pre-pulse before the main pulse can reduce the preheating of the spherical shell during the shock wave compression process, and the change of the main pulse to the oblique pulse can increase the ablation depth and the length of the electron heat conduction zone, and reduce the requirement on the compression laser. Therefore, the optimized laser waveform significantly increases the plasma ejection speed from the golden cone mouth under the same laser energy. The plasma temperature and density increase significantly after the collision. This study provides an important reference for laser waveform optimization of DCI fusion schemes.
We successfully captured the collision plasma in DCI experiments using an eight-pinhole array and X-ray streak camera, forming the ultrafast two-dimensional X-ray imaging system (MIXS). With this setup, we obtained the ultrafast two-dimensional X-ray evolution process of the collision plasma, achieving a time resolution of 80 ps and a spatial resolution of 42 μm. However, we observed non-uniformities in the plasma collision process due to disparities in laser energy and irradiation. Despite these achievements, limitations persisted. The short slit of the X-ray streak camera, coupled with constraints on the time window and an unstable aiming scheme, impacted the time and spatial resolution of the MIXS system. Additionally, some deviations in aiming were noted. Crucially, the absence of a precise time reference made it challenging to ascertain the exact commencement and conclusion of the laser pulse.
Based on the shortcomings of the above MIXS system, we upgraded and optimized it, changed longer slit and faster time window for the X-ray streak camera, corrected the nonlinear sweeping speed of the X-ray streak camera by adding the temporal fiducial pulses and determined the accurate arrival time of the laser. The MIXS system was verified by time calibration using the temporal fiducial pulses for the first time in China. At the same time, the aiming scheme was optimized, and a periscope system with easy operation and high stability was designed. After optimization of various measures, we designed the ultrafast two-dimensional X-ray imaging system (MIXS-F) with time resolution of 38ps and space resolution of 18µm. The system has been successfully verified on the Shenguang-II laser facility to confirm its accuracy and effectiveness, which provides an important diagnostic tool for the observation of complex physical phenomena such as the implosion process of laser fusion.
In conclusion, this paper thoroughly investigates the application of ultrafast diagnosis in two laser plasma fields: DCI and laboratory astrophysics. It encompasses a detailed analysis of physical theories alongside the development and optimization of ultrafast diagnosis techniques. Furthermore, the experimental results and analytical conclusions are meticulously verified and compared using MHD numerical simulation programs like FLASH. These work provides more references for the application of ultrafast diagnostics in the field of laser plasma, helps to advance the development of ultrafast diagnostics, improves our understanding of the physical processes involved in the implosion phase of biconical collision ignition, and supports and validates the astronomical study of the interaction between the solar wind and the Earth's magnetosphere.

参考文献总数:

 89    

馆藏地:

 图书馆学位论文阅览区(主馆南区三层BC区)    

馆藏号:

 博070401/24016    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式