- 无标题文档
查看论文信息

中文题名:

 调和映射到单位球面上的热流中奇点的运动    

姓名:

 罗春梅    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070102    

学科专业:

 计算数学    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2019    

校区:

 北京校区培养    

学院:

 数学科学学院    

研究方向:

 复杂流体计算与分析    

第一导师姓名:

 张辉    

第一导师单位:

 北京师范大学数学科学学院    

提交日期:

 2019-06-24    

答辩日期:

 2019-05-29    

外文题名:

 Motion of singularities in the heat flow of harmonic maps into a unitsphere    

中文关键词:

 调和映射的热流 ; 奇点 ; 边界效应 ; 相互作用    

外文关键词:

 Heat flow of harmonic maps ; singularity ; boundary effect ; interaction.    

中文摘要:

本文研究了调和映射到单位球面上的热流中初值的奇点的运动规律. 利用数值实验模 拟奇点的运动过程,通过观察奇点在不同时刻的形态和位置,我们归纳得出了奇点的运动规 律. 这里的奇点与向列液晶中的点缺陷联系密切. 本文的数值实验中, 在Neumann 边界条件 下奇点的运动过程能很好地反映向列液晶中点缺陷的运动过程. 但是, 由于模型本身的缺 陷, 在Dirichlet 边界条件下的部分结果与向列液晶的点缺陷的运动情况有些出入. 实验表 明,奇点的运动受到奇点的初始位置和本身特性,奇点之间的相互作用以及边界条件等多个 因素的影响.

外文摘要:

We focus on the motion of singularities of the initial value in the heat flow of harmonic maps into a unit sphere. By simulating the motion of singularities via numerical experiments, we identify the rule of singularity movement by observing the configurations and positions of singularities at various times. A singularity is closely related to a point defect in a nematic liquid crystal. In our numerical experiments, the motion of a singularity under the Neumann boundary condition is the same as that of a point defect in the nematic liquid crystal. However, the results under the Dirichlet boundary condition differ due to a shortcoming of the model. The motion of a singularity is affected by its initial position and characteristics, the interaction between singularities, and the boundary condition.

参考文献总数:

 23    

馆藏号:

 硕070102/19003    

开放日期:

 2020-07-09    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式