中文题名: | 金融市场最优执行策略与算法研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 071101 |
学科专业: | |
学生类型: | 博士 |
学位: | 理学博士 |
学位类型: | |
学位年度: | 2020 |
校区: | |
学院: | |
研究方向: | 金融复杂系统分析 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2020-06-17 |
答辩日期: | 2020-06-17 |
外文题名: | Research on Trading Execution Strategy and Control Algorithm in Financial Market |
中文关键词: | |
外文关键词: | Financial Market ; Optimal Trade Execution ; execution risk ; Dynamic Programming ; Neural Networks |
中文摘要: |
金融市场被看作国民经济的“晴雨表”和“气象台”,它通常是由投资者、金融资产、金融中介机构以及政府监管机构组成的运行复杂、结构紧密的动态复杂系统。传统的金融学理论假设金融市场是完全有效的,任意大的资产头寸可以在当前市场价格进行交易,然而实际情况并非如此,大额交易往往比小额交易具有更糟糕的执行价格。除此之外,大额交易还会进一步加剧金融资产价格的波动,引起金融市场不稳定,增大投资者的交易执行风险。为了减少大额交易带来的不利影响,投资者需要根据自身风险偏好设计交易执行策略,将大额交易订单拆分为多个子订单并逐次交易。传统的最优交易执行策略研究往往使用扩散模型来刻画金融资产价格的动力学特征,然而由于金融市场的复杂性,新信息的到达会对金融资产价格造成影响,使其在演变过程中发生跳跃现象,扩散模型不能满足这类特点。另外,最优交易执行策略的本质是复杂系统的最优控制,目前的研究大多建立在线性系统的基础之上,这是由于传统的动态规划算法在求解非线性系统最优控制时会引起维数灾难。本论文以价格模型的跳跃和非线性特征作为切入点,对最优交易执行策略和控制算法展开深入研究,主要工作如下: 由于离散时间模型存在计算过程复杂、计算强度大和不易处理交易执行期间的风险度量等问题,本文进一步在连续时间模型下,假设金融市场中的交易可以连续进行,金融资产的价格过程由加性高斯噪声和泊松噪声共同组成,在 Almgren–Chriss 流动性模型基础上,分别讨论了四种不同风险准则下的最优变现策略问题,其中包括:期望总财富、常绝对风险厌恶 (Constant Absolutely Risk Aversion, CARA) 效用函数、均值–二次变差以及均值–在险价值。接下来通过动态规划方法将其转化为最优控制问题的哈密顿–雅可比–贝尔曼偏积分微分方程 (Hamilton–Jacobi–Bellman Partial Integro–differential Equation, HJB–PIDE),利用启发式方法分别在期望总财富、均值–二次变差以及均值–在险价值准则下得到了最优变现策略的解析表达式,而对于 CARA 效用函数,我们证明了最优变现策略是关于时间的确定性函数,基于函数逼近思想得到了近似变现策略表达式。最后,通过数值仿真对推导的结果以及参数敏感性给予了说明。 针对加性噪声导致金融资产价格为负的不足,本文假设金融资产价格服从几何跳–扩散过程,考虑交易速率约束与交易费率,在 Almgren–Chriss 流动性模型基础上,最大化期望变现金融资产的现金流,此时最优变现问题 HJB–PIDE 的经典解不存在,我们从弱解角度讨论 HJB–PIDE 的性质,使用最优控制中的粘性解理论建立最优值函数与HJB–PIDE 之间的关系,通过动态规划原理 (Dynamic Programming Principle, DPP) 证明了最优值函数是 HJB–PIDE 的粘性解,进一步根据比较原理得到了 HJB–PIDE 粘性解的唯一性以及给出了最优值函数满足凸性所需要的条件。
由于金融资产价格的非线性与不确定性特征,比如价格均值回复性、价格波动弹 本文针对最优交易执策略以及延伸出的控制算法,综合运用随机微分系统中的 Ito引理、动态规划原理、HJB 方程和神经网络逼近技术等,分别得到了价格过程服从跳–扩散模型的最优变现策略解析表达式,讨论交易执行期间的不同风险测度,分析了具有控制约束下的最优变现策略弱解的存在与唯一性,设计出非线性随机系统的自适应控制器,并将其应用到机构投资的实际交易执行问题中。 |
外文摘要: |
The financial market is regarded as the ”barometer” and ”meteorological
station” of the national economy. It is usually a dynamic and complex systems
consisting of investors, financial assets, financial
intermediaries, and government regulators. Traditional financial theory assumes that the financial
market is completely efficient, and arbitrarily large asset
positions can be traded In view of the fact that the traditional diffusion model is unable to describe the jump phenomenon of financial asset price, and that the distribution of return rate shows the characteristics of peak and thick tail, this paper first expands the financial asset price model to discrete jump diffusion process, and describes the jump part of the model with composite Poisson process. Based on the Almgren–Chriss liquidity model, our goal is to maximize the expected cash flow of liquidated stocks, under the constraints of the final value of the inventory, then the dynamic programming method is used to obtain the recurrence formula of the optimal liquidation strategy formula. Furthermore, the execution risk of the remaining inventory is added to the optimization model, and the recurrence formula of the optimal realization strategy is obtained under the mean–value at risk criterion. Finally, the performance of the optimal strategy is evaluated through trading simulation. Because the discrete-time model has many problems, such as complex calculation process, high calculation intensity and difficulty in dealing with the risk measurement during the execution of trading, this paper further assumes that the trading in the financial market can be carried out continuously under the continuous time model, and the price process of financial assets is composed of additive Gaussian noise and Poisson noise. On the basis of the Almgren–Chriss liquidity model, the optimal liquidation strategy under four different risk criteria is discussed, including: expected total wealth, Constant Absolutely Risk Aversion (CARA) utility function, mean–quadratic variation, and mean–value at risk. Next, it is transformed into the Hamilton-Jacobi-Bellman Partial Integro–differential Equation (HJB–PIDE) of the stochastic optimal control problem by dynamic programming method. Using the heuristic method to obtain the analytic expression of the optimal liquidation strategy under the expected total wealth, mean–quadratic variation, and mean–value at risk value criterion, and for the CARA utility function, we proof that the strategy is a deterministic function of time. Based on the function approximation idea, an approximate expression of the liquidation strategy is obtained. The results of the derivation and the sensitivity of the parameters are explained through numerical simulation. In view of the deficiency of negative price of financial assets caused by additive noise, this paper assumes that the price of financial assets follows the geometric jump diffusion process, considering the trading rate constraint and trading fee, and on the basis of Almgren–Chriss liquidity model, maximizes the expected cash flow of financial assets. At this time, the classical solution of the optimal liquidation problem does not exist. We discuss the properties of HJB–PIDE from the point of view of weak solution, use the viscosity solution theory of optimal control to establish the relationship between the optimal value function and HJB–PIDE, and use the dynamic programming principle (DPP) proves that the optimal value function is the viscosity solution of HJB–PIDE. Furthermore, according to the comparison principle, the uniqueness of viscosity solution of HJB–PIDE and the conditions for the optimal value function to satisfy the convexity are obtained.
Due to the nonlinear and uncertainty characteristics in the financial
asset price, such as mean–reverting, elasticity of variance and long memory of
volatility etc., simply using linear systems to describe its
characteristics obviously cannot meet the actual situation. Therefore, we
propose a type of nonlinear stochastic system intelligent control algorithm based
on these characteristics. In the infinite time optimal control
problem, we first design an online policy iterative algorithm In this paper, we use Ito lemma, dynamic programming principle and HJB equation in stochastic differential systems and neural network approximation technique are used to solve the control problem extended by the optimal trading execution strategy. The analytic expression of the optimal liquidation strategy of the jump–diffusion model is obtained, the different risk measures during the execution of the trading are discussed, the existence and uniqueness of the weak solution of the optimal liquidation strategy with control constraints are analyzed, the adaptive controller of the nonlinear stochastic system is designed, and it is applied to the practical trading execution of the institutional investment. |
参考文献总数: | 132 |
作者简介: | 主要从事随机系统的最优控制研究,首先从理论角度分析了最优控制问题解的存在性与唯一性,其次结合动态规划方法、强化学习原理、神经网络技术自适应求解随机系统最优控制问题,对于离散时间系统掌握强化学习中的Q-learning、Actor-Critic 等算法。对于连续时间系统掌握Policy Iteration算法,有限时间最优控制算法等 |
馆藏号: | 博071101/20002 |
开放日期: | 2021-06-17 |