- 无标题文档
查看论文信息

中文题名:

 基于脑电反馈的双脑交互平台与脑网络机制的研究    

姓名:

 张融融    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 081002    

学科专业:

 信号与信息处理    

学生类型:

 硕士    

学位:

 工学硕士    

学位类型:

 学术学位    

学位年度:

 2019    

校区:

 北京校区培养    

学院:

 信息科学与技术学院    

研究方向:

 智能信息处理    

第一导师姓名:

 赵小杰    

第一导师单位:

 北京师范大学信息科学与技术学院    

提交日期:

 2019-06-05    

答辩日期:

 2019-05-31    

外文题名:

 CROSS-BRAIN INTERACTION PLATFORM BASED ON NEUROFEEDBACK USING ELECTROENCEPHALOGRAM AND RESEARCH ON BRAIN NETWORK MECHANISM    

中文关键词:

 双脑交互 ; 神经反馈 ; 脑网络分析 ; 竞争与协作神经机制    

中文摘要:
社会交互活动在人类日常生活中扮演重要角色,社交的大脑交互研究是认知神经科学的重要研究领域。大量研究表明交互活动伴随着单脑与跨脑的神经元集群之间连结与信息互通,其背后的神经机制较为复杂。针对双脑交互进行脑网络机制分析,可以很好地量化表征交互背后的神经耦合机制,揭示脑内、脑间神经活动机理,有助于加深人类对于交互的理解,从而设计出更加高效的团队协作模式,甚至开发治疗社交障碍等疾病的新疗法。 交互方式可以分成行为交互与脑脑交互两种。基于反馈的脑脑交互模式通过在线计算双脑神经交互指标并反馈给被试,使得其在交互的过程中,可以看到对方与自身的大脑神经活动状态,进行自身脑活动调控来更好的配合对方完成交互活动。基于反馈的双脑交互研究更有助于探索交互与行为之间的关系。目前针对交互的研究更多着眼于行为交互,因此针反馈条件下,搭建脑脑交互平台,探索脑网络机制有着重要意义。 基于上述背景,本文主要进行了以下三方面工作:首先,搭建基于脑电信号的双脑交互平台,实现实时采集、同步传输、在线计算双脑交互指标并进行反馈等功能;其次,在已有脑竞争实验范式基础上,将在线计算两人交互状态的指标引入实时反馈中,提出脑协作实验范式。最后,对两种交互模式进行交互机制分析,对实验采集的离线数据进行单脑与跨脑脑网络分析,研究基于反馈条件下竞争与协作两种模式的脑网络机制原理。 本文针对平台进行仿真与实验测试,并对实验进行有效性评估。平台测试与实验有效性评估结果表明了双脑反馈交互系统和实验范式的合理性和可行性。脑网络机制分析结果表明,在竞争与协作模式下,跨被试对应右脑间的神经同步性普遍强于左脑,且从跨脑网络拓扑分析中得出,两被试在竞争模式下,被试对应右顶叶之间神经连接性较强,表明大脑右顶叶在被试竞争交互中起到重要作用;被试在协作交互模式下,双侧额叶之间、右颞叶对应的神经连接性较强,被试在协作需要配合感知对方的行为,负责社会性信号加工的右顶叶与右额叶之间的连接更加紧密。本文对基于脑电的双脑交互进行了进一步研究,为后续对于基于反馈的交互平台搭建与交互行为神经机制的研究提供了新思路。
外文摘要:
Social interaction plays an important role in human daily lives. The study of cross brain interaction is a fundamental part of cognitive neuroscience. A large number of studies have shown that the interaction is accompanied by the connections between neuron clusters from single and across the brains. Neural mechanism behind it is extremely complicated. The analysis of brain network mechanism for cross brain interaction can quantify the neural coupling behind the interaction, reveal the mechanism of nerve activities within and across the brains, and help deepen human understanding of interaction, thus designing a more efficient teamwork model and even develop new therapies for diseases such as social disorders. The interaction mode can be divided into behavioral interaction and brain-brain interaction. The brain-brain interaction model based on feedback which calculates the cross-brain nerve interaction index and feeds it back to the subjects, so the subjects can see the other’s brain activity status, and adjust their own brain activity to coordinate with each other better in order to complete the interaction task. It is more helpful to explore the relationship between interaction and behavior based on the cross-brain interaction researches with the approach of neural feedback. At present, the research on interaction is more focused on the study of behavioral interaction. The research on cross brain interaction based on feedback is still rare. The feedback-based cross-brain interaction platform needs further research and the interaction mechanism needs further exploration. Based on the background, this paper mainly carried out the following three aspects: First, we build a cross-brain interaction platform based on EEG signals which can achieve data acquisition and synchronize the transmission of EEG signals in real-time. With the online data processing software and feedback interaction system, the parameters which reflects the cross-brain interaction status including band-power energy and coherence are calculated in real time, and the results are fed back to the subject in visual form. Secondly, based on the existing experimental paradigm for the competition mode, we proposed a new paradigm for collaboration mode which needs the online calculation reflecting the interaction status between the subjects to be fed online. Finally, the interaction mechanism for competition and collaboration modes is analyzed. The offline data of the experimental data is analyzed by within and across the brains’ networks, and the principle of brain network mechanism based on the competition and interaction modes under feedback conditions is studied. This paper conducts simulation and experimental tests on the platform and evaluates the effectiveness of the experiment. The analysis of brain network mechanism shows that under the competition and cooperation mode, the neuro synchronization between the right brains across the subjects is generally stronger than that of the left brains in the competition mode. The neural synchronization between the bilateral frontal lobe and the right temporal lobe is stronger for the subjects in collaborative mode. The subjects need to aware the behavior from the other side, so the connection between the right parietal lobe and the right frontal lobe which are responsible for social signal processing is getting closer. In this paper, the cross-brain interaction based on neural feedback using EEG is being further studied, which provides a new idea for the research of interaction platform construction and interactive behavioral neural mechanism.
参考文献总数:

 62    

作者简介:

 张融融 男 北京师范大学信息科学与技术学院硕士,发表会议论文A Cross-Brain Interaction Platform Based on Neurofeedback Using Electroencephalogram[C].Lecture Notes in Computer Science 10915, 222-230, 2018. Springer, Cham. International Conferenceon Human-Computer Interaction 2018.7, USA    

馆藏号:

 硕081002/19001    

开放日期:

 2020-07-09    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式